Require Import List.
Export ListNotations.
Require Import PeanoNat.
Require Import Lia.
Require Import Coq.Arith.Compare_dec.
Require Import GLS_calcs.
Require Import GLS_termination_measure.
Require Import GLS_exch.
Require Import GLS_ctr.
Require Import GLS_wkn.
Require Import GLS_dec.
Require Import GLS_inv_ImpR_ImpL.
Set Implicit Arguments.
Lemma forall_elem_list : forall {A : Type} (l : list A) (P : A -> Type),
(forall a, (InT a l) -> ((P a) + ((P a) -> False))) ->
(existsT2 a, (InT a l) * (P a)) + ((existsT2 a, (InT a l) * (P a)) -> False).
Proof.
induction l.
- intros. right. intros. destruct X0. destruct p. inversion i.
- intros. pose (X a). assert (InT a (a :: l)). apply InT_eq. apply s in X0. destruct X0.
* left. exists a. split. apply InT_eq. assumption.
* assert (forall a : A, InT a l -> P a + (P a -> False)).
{ intros. apply X. apply InT_cons. assumption. }
pose (IHl P X0). destruct s0.
+ left. destruct s0. exists x. split. apply InT_cons. firstorder. firstorder.
+ right. intro. destruct X1. destruct p. inversion i. subst. firstorder. subst. firstorder.
Qed.
(* The list premises of a sequent *)
Definition proj1_sigT2 {A : Type} (P : A -> Type) (e:sigT P) := match e with
| existT _ a b => a
end.
Definition proj2_sigT2 {A : Type} (P : A -> Type) (e : sigT P) :=
match e return (P (proj1_sigT2 e)) with
| existT _ a b => b
end.
Lemma In_InT : forall (A : MPropF) l, In A l -> InT A l.
Proof.
intros. apply in_splitT in H. destruct H. destruct s. subst. apply InT_or_app. right.
apply InT_eq.
Qed.
Definition In_InT_pair : forall (A : MPropF) (n : nat) l, In (A, n) l -> InT (A, n) l.
Proof.
induction l.
- intro. inversion H.
- intro. assert ({(A, n) = a} + {(A, n) <> a}). destruct a.
destruct (eq_dec_form A m). subst. destruct (Nat.eq_dec n n0). subst. auto.
right. intro. apply n1. inversion H0. auto. right. intro. inversion H0.
auto. destruct H0. subst. apply InT_eq. apply InT_cons. apply IHl.
inversion H. exfalso. auto. assumption.
Defined.
Definition InT_map_iff : forall {A B : Type} (f : A -> B) (l : list A) (y : B),
(InT y (map f l) -> (existsT2 x : A, (f x = y) * InT x l)) *
((existsT2 x : A, (f x = y) * InT x l) -> InT y (map f l)).
Proof.
induction l.
- intros. simpl. split. intro. inversion X. intro. destruct X. destruct p. inversion i.
- simpl. intros. split.
* intro. inversion X.
+ subst. exists a. split ; [ reflexivity | apply InT_eq].
+ subst. pose (IHl y). destruct p. apply s in X0. destruct X0. destruct p. exists x.
split. assumption. apply InT_cons. assumption.
* intro. pose (IHl y). destruct p. clear s. pose (proj2_sigT2 X).
destruct p. inversion i0. subst. rewrite <- e. rewrite <- H0. apply InT_eq.
subst. assert (existsT2 x : A, (f x = y) * InT x l). exists (proj1_sigT2 X).
split ; assumption. apply i in X1. apply InT_cons. assumption.
Defined.
Fixpoint top_imps (l : list MPropF) : list MPropF :=
match l with
| nil => nil
| h :: t => match h with
| Imp A B => (Imp A B) :: top_imps t
| _ => top_imps t
end
end.
Fixpoint pos_top_imps (l : list MPropF) : (list ((MPropF) * nat)) :=
match l with
| nil => nil
| h :: t => match h with
| Imp A B => (Imp A B, 1) :: (map (fun y => (fst y, S (snd y))) (pos_top_imps t))
| _ => (map (fun y => (fst y, S (snd y))) (pos_top_imps t))
end
end.
Lemma le_False_lt : forall n m, ((n <= m) -> False) -> (m < n).
Proof.
induction n.
- intros. exfalso. apply H. apply le_0_n.
- induction m.
* intros. lia.
* intros. rewrite <- Nat.succ_lt_mono. apply IHn. intro. apply H. lia.
Qed.
Definition top_boxes_nobox_gen_ext : forall l, nobox_gen_ext (top_boxes l) l.
Proof.
induction l.
- simpl. apply univ_gen_ext_nil.
- destruct a ; simpl.
* apply univ_gen_ext_extra. intro. inversion X. inversion H. assumption.
* apply univ_gen_ext_extra. intro. inversion X. inversion H. assumption.
* apply univ_gen_ext_extra. intro. inversion X. inversion H. assumption.
* apply univ_gen_ext_cons. assumption.
Defined.
Lemma nobox_gen_ext_top_boxes_identity : forall l0 l1, nobox_gen_ext l0 l1 ->
is_Boxed_list l0 ->
(l0 = top_boxes l1).
Proof.
intros l0 l1 X. induction X.
- intros. reflexivity.
- intro. simpl. destruct x as [n | | | ].
* exfalso. pose (H (# n)). assert (In # n (# n :: l)). apply in_eq. apply e in H0.
destruct H0. inversion H0.
* exfalso. pose (H (⊥)). assert (In (⊥) (⊥ :: l)). apply in_eq. apply e in H0.
destruct H0. inversion H0.
* exfalso. pose (H (x1 --> x2)). assert (In (x1 --> x2) (x1 --> x2 :: l)). apply in_eq. apply e in H0.
destruct H0. inversion H0.
* assert (l = top_boxes le). apply IHX. intro. intros. apply H. apply in_cons. assumption.
rewrite H0. reflexivity.
- simpl. destruct x.
* apply IHX.
* apply IHX.
* apply IHX.
* exfalso. apply p. exists x. reflexivity.
Qed.
Fixpoint flatten_list {A : Type} (l : list (list A)) : list A :=
match l with
| [ ] => [ ]
| h :: t => h ++ (flatten_list t)
end
.
Definition InT_flatten_list_InT_elem {A : Type} : forall (l : list (list A)) b,
InT b (flatten_list l) -> (existsT2 bs, (InT b bs) * (InT bs l)).
Proof.
induction l.
- intros. simpl in X. inversion X.
- intros. simpl in X. apply InT_app_or in X. destruct X.
* exists a. split ; [assumption | apply InT_eq].
* pose (IHl b). apply s in i. destruct i. destruct p. exists x. split ; [assumption | apply InT_cons ; assumption].
Defined.
Lemma redundant_flatten_list : forall ls (s : Seq), map (fun z : list MPropF * list MPropF => [z;s]) ls =
flatten_list (map (fun y : list MPropF * list MPropF => [[y;s]]) ls).
Proof.
induction ls.
- intros. simpl. reflexivity.
- simpl. intros. rewrite IHls. reflexivity.
Qed.
Definition InT_trans_flatten_list {A : Type} : forall (l : list (list A)) bs b,
(InT b bs) -> (InT bs l) -> (InT b (flatten_list l)).
Proof.
induction l.
- intros. inversion X0.
- intros. inversion X0.
* subst. simpl. apply InT_or_app. auto.
* subst. simpl. apply InT_or_app. right. pose (IHl bs b X X1) ; assumption.
Defined.
(* In this file we prove that each sequent Γ |- Δ has a derivation (not proof) D in
GLS of maximal height: all derivations in GLS of this sequent must have an
inferior or equal height to that of D.
This result can be understood as claiming that the proof search defined by GLS
terminates. *)
(* The next lemma claims that for each sequent s there is a derivation of that sequent. *)
Lemma der_s_inhabited : forall s, inhabited (GLS_drv s).
Proof.
intros s.
pose (@dpI Seq GLS_rules (fun _ : Seq => True) s).
assert (H: (fun _ : Seq => True) s). apply I. apply d in H. apply inhabits. assumption.
Qed.
(* The next definition deals with the property of being a derivation D0 of maximal height
for the sequent s. *)
Definition is_mhd (s: Seq) (D0 : GLS_drv s): Prop :=
forall (D1 : GLS_drv s), derrec_height D1 <= derrec_height D0.
(* The next lemma says that given a list and an element, there are only finitely many
ways to insert this element in a list. *)
Definition list_of_splits : forall (l : list MPropF), existsT2 listSplits,
forall l1 l2, ((l1 ++ l2 = l) <-> In (l1, l2) listSplits).
Proof.
induction l.
- exists [([],[])]. intros. destruct l1. split ; intro. simpl in H. rewrite H. apply in_eq.
simpl in H. destruct H. inversion H. reflexivity. inversion H. split ; intro.
simpl in H. inversion H. simpl. inversion H. inversion H0. inversion H0.
- destruct IHl. exists ([([], a :: l)] ++ (map (fun y => (a :: (fst y), snd y)) x)).
intros. split ; intro.
* apply in_or_app. destruct l1. simpl. left. left. simpl in H. rewrite H.
reflexivity. simpl in H. inversion H. subst. right. pose (i l1 l2). destruct i0.
assert (l1 ++ l2 = l1 ++ l2). reflexivity. apply H0 in H2.
pose (in_map (fun y : list MPropF * list MPropF => (a :: fst y, snd y)) x (l1, l2) H2).
simpl in i. assumption.
* simpl in H. destruct H. inversion H. simpl. reflexivity. rewrite in_map_iff in H.
destruct H. destruct H. inversion H. subst. simpl. pose (i (fst x0) (snd x0)).
destruct i0. assert ((fst x0, snd x0) = x0). destruct x0. simpl. reflexivity.
rewrite H3 in H2. apply H2 in H0. rewrite H0. reflexivity.
Defined.
Definition listInserts l (A : MPropF) := map (fun y => (fst y) ++ A :: (snd y)) (proj1_sigT2 (list_of_splits l)).
(* The next two lemmas make sure that the definition listInserts indeed captures the intended
list. *)
Lemma listInserts_In : forall l (A: MPropF) l1 l2, ((l1 ++ l2 = l) -> In (l1 ++ A :: l2) (listInserts l A)).
Proof.
intros. unfold listInserts. assert (In (l1, l2) (proj1_sigT2 (list_of_splits l))). destruct (list_of_splits l).
simpl. pose (i l1 l2). apply i0. assumption.
pose (in_map (fun y : list MPropF * list MPropF => fst y ++ A :: snd y) (proj1_sigT2 (list_of_splits l)) (l1, l2) H0).
simpl in i. assumption.
Qed.
Lemma In_listInserts : forall l (A: MPropF) l0, In l0 (listInserts l A) ->
(exists l1 l2, prod (l1 ++ l2 = l) (l1 ++ A :: l2 = l0)).
Proof.
intros. unfold listInserts in H. destruct (list_of_splits l). simpl in H. rewrite in_map_iff in H.
destruct H. destruct H. subst. exists (fst x0). exists (snd x0). split. apply i.
destruct x0. simpl. assumption. reflexivity.
Qed.
(* The definitions below allow you to create the list of all sequents given two lists and a
formula to insert in one of them. *)
Definition listInsertsR_Seqs (Γ Δ : list MPropF) (A : MPropF) := map (fun y => (y, Δ)) (listInserts Γ A).
Definition listInsertsL_Seqs (Γ Δ : list MPropF) (A : MPropF) := map (fun y => (Γ, y)) (listInserts Δ A).
(* The next definition allows one to create all sequents *)
Definition listInsertsRL_Seqs (Γ Δ : list MPropF) (A B : MPropF) :=
flatten_list (map (fun z => (map (fun y => (z, y)) (listInserts Δ B))) (listInserts Γ A)).
(* Now we can prove that a sequent has only finitely many potential premises via the ImpR rules.
The next definition simply takes a list of formulae l and a sequent s. It outputs a list of sequents.
These sequents are generated when there is an implication (Imp A B) encountered in l. With such an
implication, the function will stack the list of all insertions of A on the left of s and of B on
the right of s (roughly: in fact you need to destroy all such implications on the right to get an ImpRRule
premise), and then continues computing on the rest of l. *)
Fixpoint remove_nth (n: nat) (A : MPropF) l:=
match n with
| 0 => l
| 1 => match l with
| [] => []
| B::tl => if (eq_dec_form A B) then tl else B:: tl
end
| S m => match l with
| [] => []
| B::tl => B::(remove_nth m A tl)
end
end.
Fixpoint nth_split (n : nat) (l : list MPropF) : (list MPropF * list MPropF) :=
match n with
| 0 => ([], l)
| 1 => match l with
| [] => ([], [])
| B::tl => ([B] , tl)
end
| S m => match l with
| [] => ([], [])
| B::tl => (B :: (fst (nth_split m tl)), snd (nth_split m tl))
end
end.
Fixpoint prems_Imp_R (l : list ((MPropF) * nat)) (s : Seq) : list Seq :=
match l with
| nil => nil
| (C, n) :: t => match n with
| 0 => prems_Imp_R t s
| S m => match C with
| Imp A B => (listInsertsR_Seqs (fst s)
((fst (nth_split m (remove_nth (S m) C (snd s)))) ++
B :: (snd (nth_split m (remove_nth (S m) C (snd s)))))
A)
++ (prems_Imp_R t s)
| _ => prems_Imp_R t s
end
end
end.
Lemma nth_split_length : forall (l0 l1 : list MPropF), (nth_split (length l0) (l0 ++ l1)) = (l0, l1).
Proof.
induction l0.
- intros. simpl. reflexivity.
- intros. pose (IHl0 l1). simpl (length (a :: l0)). simpl ((a :: l0) ++ l1).
simpl. destruct l0.
* simpl. reflexivity.
* assert (match length (m :: l0) with
| 0 => ([a], (m :: l0) ++ l1)
| S _ =>
(a :: fst (nth_split (length (m :: l0)) ((m :: l0) ++ l1)),
snd (nth_split (length (m :: l0)) ((m :: l0) ++ l1)))
end = (a :: fst (nth_split (length (m :: l0)) ((m :: l0) ++ l1)),
snd (nth_split (length (m :: l0)) ((m :: l0) ++ l1)))). reflexivity. rewrite H.
clear H. rewrite e. simpl. reflexivity.
Qed.
Lemma nth_split_idL : forall (l0 l1 : list MPropF), l0 = fst (nth_split (length l0) (l0 ++ l1)).
Proof.
induction l0.
- intros. simpl. reflexivity.
- intros. simpl (length (a :: l0)). pose (IHl0 l1). assert (fst (nth_split (S (length l0)) ((a :: l0) ++ l1)) =
a :: fst (nth_split (length l0) (l0 ++ l1))). simpl. destruct l0. simpl. reflexivity.
simpl. reflexivity. rewrite H. rewrite <- e. reflexivity.
Qed.
Lemma nth_split_idR : forall (l0 l1 : list MPropF), l1 = snd (nth_split (length l0) (l0 ++ l1)).
Proof.
induction l0.
- intros. simpl. reflexivity.
- intros. simpl (length (a :: l0)). pose (IHl0 l1). rewrite e. destruct l0.
* simpl. reflexivity.
* simpl (length (m :: l0)). simpl (S (S (length l0))).
simpl (length (m :: l0)) in e. rewrite <- e.
assert ((S (S (length l0))) = (length (a :: m :: l0))). simpl. reflexivity.
rewrite H. rewrite nth_split_length. simpl. reflexivity.
Qed.
Lemma nth_split_length_id : forall (l0 l1 : list MPropF) n, (length l0 = n) ->
(fst (nth_split n (l0 ++ l1)) = l0 /\
snd (nth_split n (l0 ++ l1)) = l1).
Proof.
induction l0.
- intros. simpl. split. simpl in H. subst. simpl. reflexivity. simpl in H. subst. simpl. reflexivity.
- intros. simpl in H. subst. split.
* assert (J1:length l0 = length l0). reflexivity. pose (@IHl0 l1 (length l0) J1).
destruct a0. simpl. destruct l0. simpl. reflexivity. simpl. rewrite <- H.
simpl. reflexivity.
* assert (J1:length l0 = length l0). reflexivity. pose (@IHl0 l1 (length l0) J1).
destruct a0. rewrite <- H0. simpl ((a :: l0) ++ snd (nth_split (length l0) (l0 ++ l1))).
assert ((nth_split (S (length l0)) (a :: l0 ++ snd (nth_split (length l0) (l0 ++ l1))) =
(a :: l0 ,snd (nth_split (length l0) (l0 ++ l1))))).
pose (nth_split_length (a :: l0) (snd (nth_split (length l0) (l0 ++ l1)))). apply e.
rewrite H1. simpl. reflexivity.
Qed.
Lemma In_pos_top_imps_0_False : forall l (A : MPropF), In (A, 0) (pos_top_imps l) -> False.
Proof.
- induction l.
* intros. inversion H.
* intros. simpl in H. destruct a.
+ simpl in H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e.
+ simpl in H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e.
+ simpl in H. destruct H. inversion H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e.
+ simpl in H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e.
Qed.
Lemma In_pos_top_imps_imp : forall l (A : MPropF) n, In (A, n) (pos_top_imps l) -> (existsT2 C D, A = Imp C D).
Proof.
induction l ; intros.
- simpl in H. inversion H.
- simpl in H. destruct a ; try apply IHl in H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. inversion e. destruct x. subst. apply InT_In in i. apply IHl in i. assumption.
apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. inversion e. destruct x. subst. apply InT_In in i. apply IHl in i. assumption.
apply In_InT_pair in H. inversion H. subst. inversion H1. exists a1. exists a2. reflexivity.
subst. apply InT_map_iff in H1. destruct H1. destruct p. destruct x. simpl in e. inversion e.
subst. apply InT_In in i. apply IHl in i. assumption.
apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. inversion e. destruct x. subst. apply InT_In in i. apply IHl in i. assumption.
Qed.
Lemma In_pos_top_imps_In_l : forall l (A : MPropF) n, In (A, n) (pos_top_imps l) -> In A l.
Proof.
induction l.
- intros. simpl in H. destruct H.
- intros. simpl in H. destruct a.
* apply in_cons. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e. subst. apply InT_In in i. apply IHl in i.
assumption.
* apply in_cons. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e. subst. apply InT_In in i. apply IHl in i.
assumption.
* inversion H.
+ inversion H0. subst. apply in_eq.
+ apply in_cons. apply In_InT_pair in H0. apply InT_map_iff in H0. destruct H0.
destruct p. destruct x. inversion e. subst. apply InT_In in i. apply IHl in i.
assumption.
* apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e. subst. apply InT_In in i. apply IHl in i.
apply in_cons. assumption.
Qed.
Lemma effective_remove_nth : forall A l0 l1, ((remove_nth (S (length l0)) A (l0 ++ A :: l1)) = l0 ++ l1).
Proof.
induction l0.
- intros. simpl. destruct (eq_dec_form A A). reflexivity. exfalso. auto.
- intros. simpl (S (length (a :: l0))). repeat rewrite <- app_assoc. simpl ((a :: l0) ++ A :: l1).
pose (IHl0 l1). simpl ((a :: l0) ++ l1). rewrite <- e. simpl. reflexivity.
Qed.
Definition In_pos_top_imps_split_l : forall l (A : MPropF) n, In (A, S n) (pos_top_imps l) ->
existsT2 l0 l1, (l = l0 ++ A :: l1) /\
(length l0 = n) /\
(l0 = fst (nth_split n (remove_nth (S n) A l))) /\
(l1 = snd (nth_split n (remove_nth (S n) A l))).
Proof.
induction l.
- intros. simpl. exfalso. simpl in H. destruct H.
- intros. simpl in H. destruct a as [n0 | | | ].
* apply In_InT_pair in H. apply InT_map_iff in H. destruct H as ([m n1] & e & i).
simpl in e. inversion e. subst. destruct n. exfalso.
apply InT_In in i. apply In_pos_top_imps_0_False in i. assumption.
apply InT_In in i. pose (IHl A n i). destruct s as (x & x0 & e2 & e3 & e1 & e0).
subst. exists (# n0 :: x). exists x0. repeat split.
rewrite effective_remove_nth in e1. rewrite effective_remove_nth in e0.
assert (fst (# n0 :: fst (nth_split (S (length x)) (x ++ x0)), snd (nth_split (S (length x)) (x ++ x0))) =
# n0 :: fst (nth_split (S (length x)) (x ++ x0))). simpl. reflexivity.
assert (S (S (length x)) = S (length (# n0 :: x))). simpl. reflexivity.
rewrite H0. assert ((# n0 :: x ++ A :: x0) = ((# n0 :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H1. clear H0. clear H1. rewrite effective_remove_nth.
pose (nth_split_idL (# n0 :: x) x0). simpl (length (# n0 :: x)) in e2.
rewrite <- e2. reflexivity.
rewrite effective_remove_nth in e0. rewrite effective_remove_nth in e1.
assert (S (S (length x)) = S (length (# n0 :: x))). simpl. reflexivity.
rewrite H. assert ((# n0 :: x ++ A :: x0) = ((# n0 :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H0. clear H. clear H0. rewrite effective_remove_nth.
pose (nth_split_idR (# n0 :: x) x0). simpl (length (# n0 :: x)) in e2.
rewrite <- e2. reflexivity.
* apply In_InT_pair in H. apply InT_map_iff in H. destruct H as ([m n1] & e & i).
simpl in e. inversion e. subst. destruct n.
-- exfalso. apply InT_In in i. apply In_pos_top_imps_0_False in i. assumption.
-- apply InT_In in i. pose (IHl A n i). destruct s as (x & x0 & e2 & e3 & e1 & e0).
subst. exists (Bot :: x). exists x0. repeat split.
rewrite effective_remove_nth in e1. rewrite effective_remove_nth in e0.
assert (fst (Bot :: fst (nth_split (S (length x)) (x ++ x0)), snd (nth_split (S (length x)) (x ++ x0))) =
Bot :: fst (nth_split (S (length x)) (x ++ x0))). simpl. reflexivity.
assert (S (S (length x)) = S (length (Bot :: x))). simpl. reflexivity.
rewrite H0. assert ((Bot :: x ++ A :: x0) = ((Bot :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H1. clear H0. clear H1. rewrite effective_remove_nth.
pose (nth_split_idL (Bot :: x) x0). simpl (length (Bot :: x)) in e2.
rewrite <- e2. reflexivity.
rewrite effective_remove_nth in e0. rewrite effective_remove_nth in e1.
assert (S (S (length x)) = S (length (Bot :: x))). simpl. reflexivity.
rewrite H. assert ((Bot :: x ++ A :: x0) = ((Bot :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H0. clear H. clear H0. rewrite effective_remove_nth.
pose (nth_split_idR (Bot :: x) x0). simpl (length (Bot :: x)) in e2.
rewrite <- e2. reflexivity.
* apply In_InT_pair in H. inversion H.
+ inversion H1. subst. exists []. exists l. repeat split. simpl.
destruct (eq_dec_form (a1 --> a2) (a1 --> a2)). reflexivity. exfalso. auto.
+ subst. apply InT_map_iff in H1. destruct H1 as ([m n1] & e & i).
simpl in e. inversion e. subst. destruct n. exfalso.
apply InT_In in i. apply In_pos_top_imps_0_False in i. assumption.
apply InT_In in i. pose (IHl A n i). destruct s as (x & x0 & e2 & e3 & e1 & e0).
subst. exists (a1 --> a2 :: x). exists x0. repeat split.
rewrite effective_remove_nth in e1. rewrite effective_remove_nth in e0.
assert (fst (a1 --> a2 :: fst (nth_split (S (length x)) (x ++ x0)), snd (nth_split (S (length x)) (x ++ x0))) =
a1 --> a2 :: fst (nth_split (S (length x)) (x ++ x0))). simpl. reflexivity.
assert (S (S (length x)) = S (length (a1 --> a2 :: x))). simpl. reflexivity.
rewrite H1. assert ((a1 --> a2 :: x ++ A :: x0) = ((a1 --> a2 :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H2. clear H2. clear H1. rewrite effective_remove_nth.
pose (nth_split_idL (a1 --> a2 :: x) x0). simpl (length (a1 --> a2 :: x)) in e2.
rewrite <- e2. reflexivity.
rewrite effective_remove_nth in e0. rewrite effective_remove_nth in e1.
assert (S (S (length x)) = S (length (a1 --> a2 :: x))). simpl. reflexivity.
rewrite H0. assert ((a1 --> a2 :: x ++ A :: x0) = ((a1 --> a2 :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H1. clear H0. clear H1. rewrite effective_remove_nth.
pose (nth_split_idR (a1 --> a2 :: x) x0). simpl (length (a1 --> a2 :: x)) in e2.
rewrite <- e2. reflexivity.
* apply In_InT_pair in H. apply InT_map_iff in H. destruct H as ([m n1] & e & i).
simpl in e. inversion e. subst. destruct n. exfalso.
apply InT_In in i. apply In_pos_top_imps_0_False in i. assumption.
apply InT_In in i. pose (IHl A n i). destruct s as (x & x0 & e2 & e3 & e1 & e0).
subst. exists (Box a :: x). exists x0. repeat split.
rewrite effective_remove_nth in e1. rewrite effective_remove_nth in e0.
assert (fst (Box a :: fst (nth_split (S (length x)) (x ++ x0)), snd (nth_split (S (length x)) (x ++ x0))) =
Box a :: fst (nth_split (S (length x)) (x ++ x0))). simpl. reflexivity.
assert (S (S (length x)) = S (length (Box a :: x))). simpl. reflexivity.
rewrite H0. assert ((Box a :: x ++ A :: x0) = ((Box a :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H1. clear H0. clear H1. rewrite effective_remove_nth.
pose (nth_split_idL (Box a :: x) x0). simpl (length (Box a :: x)) in e2.
rewrite <- e2. reflexivity.
rewrite effective_remove_nth in e0. rewrite effective_remove_nth in e1.
assert (S (S (length x)) = S (length (Box a :: x))). simpl. reflexivity.
rewrite H. assert ((Box a :: x ++ A :: x0) = ((Box a :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H0. clear H. clear H0. rewrite effective_remove_nth.
pose (nth_split_idR (Box a :: x) x0). simpl (length (Box a :: x)) in e2.
rewrite <- e2. reflexivity.
Defined.
Lemma In_l_imp_In_pos_top_imps : forall l (A B : MPropF), In (Imp A B) l ->
existsT2 n, In ((Imp A B), n) (pos_top_imps l).
Proof.
induction l.
- intros. simpl in H. destruct H.
- intros. apply In_InT in H. inversion H.
* subst. exists 1. simpl. left. reflexivity.
* destruct a.
+ subst. apply InT_In in H1. apply IHl in H1. destruct H1. exists (S x). simpl.
apply InT_In. apply InT_map_iff. exists (A --> B, x). simpl. split ; auto.
apply In_InT_pair. assumption.
+ subst. apply InT_In in H1. apply IHl in H1. destruct H1. exists (S x). simpl.
apply InT_In. apply InT_map_iff. exists (A --> B, x). simpl. split ; auto.
apply In_InT_pair. assumption.
+ subst. apply InT_In in H1. apply IHl in H1. destruct H1. exists (S x). simpl.
right. apply InT_In. apply InT_map_iff. exists (A --> B, x). simpl. split ; auto.
apply In_InT_pair. assumption.
+ subst. apply InT_In in H1. apply IHl in H1. destruct H1. exists (S x). simpl.
apply InT_In. apply InT_map_iff. exists (A --> B, x). simpl. split ; auto.
apply In_InT_pair. assumption.
Qed.
Lemma Good_pos_in_pos_top_imps : forall A B Δ0 Δ1,
In (A --> B, S (length Δ0)) (pos_top_imps (Δ0 ++ A --> B :: Δ1)).
Proof.
induction Δ0.
- intros. simpl. auto.
- intros. destruct a.
* simpl. apply InT_In. apply InT_map_iff. exists (A --> B, S (length Δ0)).
split. simpl. reflexivity. apply In_InT_pair. apply IHΔ0.
* simpl. apply InT_In. apply InT_map_iff. exists (A --> B, S (length Δ0)).
split. simpl. reflexivity. apply In_InT_pair. apply IHΔ0.
* simpl. right. apply InT_In. apply InT_map_iff. exists (A --> B, S (length Δ0)).
split. simpl. reflexivity. apply In_InT_pair. apply IHΔ0.
* simpl. apply InT_In. apply InT_map_iff. exists (A --> B, S (length Δ0)).
split. simpl. reflexivity. apply In_InT_pair. apply IHΔ0.
Qed.
(* From there we can show that given a specific (Imp A B) on the right of a sequent S,
there is only finitely many premises via ImpR applied on this implication. But we
need to do it for all implications on the right of this sequent. *)
Definition ImpR_help01 : forall prem s l, InT prem (prems_Imp_R l s) ->
(existsT2 n A B Γ0 Γ1 Δ0 Δ1,
(In ((Imp A B), S n) l) /\
(prem = (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1)) /\
(Γ0 ++ Γ1 = fst s) /\
(Δ0 = (fst (nth_split n (remove_nth (S n) (Imp A B) (snd s))))) /\
(Δ1 = (snd (nth_split n (remove_nth (S n) (Imp A B) (snd s)))))).
Proof.
intros prem s. destruct s. destruct prem. induction l3 ; intros X.
- simpl in X. inversion X.
- destruct a as [m n]. destruct m as [m | | | ].
* simpl in X. destruct n.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p).
decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try auto. apply in_cons. tauto.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
* simpl in X. destruct n.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
* destruct n.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
+ apply InT_app_or in X. destruct X.
{ simpl (fst (l, l0)) in i. simpl (snd (l, l0)) in i.
unfold listInsertsR_Seqs in i. apply InT_map_iff in i. destruct i.
destruct p. subst. unfold listInserts in i. apply InT_map_iff in i. destruct i.
destruct p. destruct x0. subst. destruct (list_of_splits l). simpl in i. exists n.
exists m1. exists m2. exists l4. exists l5. simpl (snd (l, l0)).
simpl (fst (l, l0)).
exists (fst (nth_split n (remove_nth (S n) (m1 --> m2) l0))).
exists (snd (nth_split n (remove_nth (S n) (m1 --> m2) l0))).
repeat split ; try auto. apply in_eq. rewrite i0. apply InT_In. assumption. }
{ pose (IHl3 i). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto. }
* simpl in X. destruct n.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
Defined.
Definition ImpR_help1 : forall prem s, InT prem (prems_Imp_R (pos_top_imps (snd s)) s) -> ImpRRule [prem] s.
Proof.
intros prem s X. pose (ImpR_help01 _ _ X). destruct s0. destruct s.
destruct s0. destruct s as (B & Γ0 & Γ1 & Δ0 & Δ1 & i & e2 & e3 & e4 & e5).
subst. simpl in i, e3. subst.
simpl (snd (_, _)) in *.
apply In_pos_top_imps_split_l in i. destruct i. destruct s as (x2 & H1 & H2 & H3 & H4).
subst.
rewrite <- H4. rewrite effective_remove_nth. rewrite <- nth_split_idL.
apply ImpRRule_I.
Defined.
Definition ImpR_help002 : forall Γ0 Γ1 Δ0 Δ1 A B,
InT (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1) (listInsertsR_Seqs (Γ0 ++ Γ1) (Δ0 ++ B :: Δ1) A).
Proof.
intros. unfold listInsertsR_Seqs. apply InT_map_iff. exists (Γ0 ++ A :: Γ1). split.
reflexivity. unfold listInserts. apply InT_map_iff. exists (Γ0, Γ1). simpl. split.
reflexivity. destruct (list_of_splits (Γ0 ++ Γ1)). simpl. pose (i Γ0 Γ1).
apply In_InT_seqs. apply i0. reflexivity.
Defined.
Definition ImpR_help02 : forall Γ0 Γ1 Δ0 Δ1 A B l n,
ImpRRule [(Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1)] (Γ0 ++ Γ1, Δ0 ++ (Imp A B) :: Δ1) ->
(length Δ0 = n) ->
(In ((Imp A B), S n) l) ->
InT (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1) (prems_Imp_R l (Γ0 ++ Γ1, Δ0 ++ (Imp A B) :: Δ1)).
Proof.
induction l ; intros.
- inversion H1.
- destruct a. destruct m.
* apply In_InT_pair in H1. inversion H1. subst. inversion H3. subst. apply InT_In in H3.
assert (J1: length Δ0 = length Δ0). reflexivity.
pose (IHl _ H J1 H3). simpl. destruct n0. assumption. assumption.
* apply In_InT_pair in H1. inversion H1. subst. inversion H3. subst. apply InT_In in H3.
assert (J1: length Δ0 = length Δ0). reflexivity.
pose (IHl _ H J1 H3). simpl. destruct n0. assumption. assumption.
* apply In_InT_pair in H1. inversion H1.
+ subst. inversion H3. subst. destruct Δ0.
{ simpl. pose (ImpR_help002 Γ0 Γ1 [] Δ1 A B). simpl in i. destruct (eq_dec_form (A --> B) (A --> B)).
apply InT_or_app. auto. exfalso. auto. }
{ unfold prems_Imp_R. apply InT_or_app. left.
assert ((remove_nth (S (length (m :: Δ0))) (A --> B) (snd (Γ0 ++ Γ1, (m :: Δ0) ++ A --> B :: Δ1))) =
(m :: Δ0) ++ Δ1). simpl (snd (Γ0 ++ Γ1, (m :: Δ0) ++ A --> B :: Δ1)).
pose (effective_remove_nth (A --> B) (m :: Δ0) Δ1). assumption.
rewrite H0.
assert (fst (nth_split (length (m :: Δ0)) ((m :: Δ0) ++ Δ1)) = (m :: Δ0) /\
snd (nth_split (length (m :: Δ0)) ((m :: Δ0) ++ Δ1)) = Δ1). apply nth_split_length_id.
reflexivity. destruct H2. rewrite H2. rewrite H4. apply ImpR_help002. }
+ subst. assert (J1: (length Δ0) = (length Δ0)). reflexivity. apply InT_In in H3.
pose (IHl (length Δ0) H J1 H3). simpl. destruct n0. assumption. apply InT_or_app. auto.
* apply In_InT_pair in H1. inversion H1. subst. inversion H3. subst. apply InT_In in H3.
assert (J1: length Δ0 = length Δ0). reflexivity.
pose (IHl _ H J1 H3). simpl. destruct n0. assumption. assumption.
Defined.
Definition ImpR_help2 : forall prem s, ImpRRule [prem] s -> InT prem (prems_Imp_R (pos_top_imps (snd s)) s).
Proof.
intros. inversion H. subst. simpl.
pose (@ImpR_help02 Γ0 Γ1 Δ0 Δ1 A B (pos_top_imps (Δ0 ++ A --> B :: Δ1)) (length Δ0)). apply i ; try assumption.
reflexivity. apply Good_pos_in_pos_top_imps.
Defined.
Definition finite_ImpR_premises_of_S : forall (s : Seq), existsT2 listImpRprems,
(forall prems, ((ImpRRule prems s) -> (InT prems listImpRprems)) *
((InT prems listImpRprems) -> (ImpRRule prems s))).
Proof.
intro s. destruct s.
exists (map (fun y => [y]) (prems_Imp_R (pos_top_imps l0) (l,l0))).
intros. split ; intro.
- inversion H. subst. apply InT_map_iff.
exists (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1). split. reflexivity.
pose (@ImpR_help2 (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1) (Γ0 ++ Γ1, Δ0 ++ A --> B :: Δ1)). simpl in i. apply i.
assumption.
- apply InT_map_iff in H. destruct H. destruct p. subst. apply ImpR_help1. simpl. assumption.
Defined.
(* Then, we turn to the case of the ImpL rule. *)
Fixpoint prems_Imp_L (l : list ((MPropF) * nat)) (s : Seq) : list (list Seq) :=
match l with
| nil => nil
| (C, n) :: t => match n with
| 0 => prems_Imp_L t s
| S m => match C with
| Imp A B => flatten_list
(map (fun y => map (fun z => [z; y])
(listInsertsL_Seqs ((fst (nth_split m (remove_nth (S m) C (fst s)))) ++
(snd (nth_split m (remove_nth (S m) C (fst s))))) (snd s) A))
[(((fst (nth_split m (remove_nth (S m) C (fst s)))) ++
B :: (snd (nth_split m (remove_nth (S m) C (fst s))))), (snd s))])
++ (prems_Imp_L t s)
| _ => prems_Imp_L t s
end
end
end.
Definition ImpL_help002 : forall Γ0 Γ1 Δ0 Δ1 A B,
InT [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]
(flatten_list (map (fun y : list MPropF * list MPropF => map
(fun z : list MPropF * list MPropF => [y; z]) [(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)])
(listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A)))
.
Proof.
intros.
pose (@InT_trans_flatten_list _ (map (fun y : list MPropF * list MPropF => map
(fun z : list MPropF * list MPropF => [y; z]) [(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)])
(listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A))
(map (fun z : list MPropF * list MPropF => [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); z])
[(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]) [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]).
apply i ; clear i.
- pose (InT_map_iff (fun z : list MPropF * list MPropF => [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); z]) [(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]
[(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]).
destruct p. clear s. apply i. exists (Γ0 ++ B :: Γ1, Δ0 ++ Δ1). split. reflexivity. apply InT_eq.
- pose (InT_map_iff (fun y : list MPropF * list MPropF =>
map (fun z : list MPropF * list MPropF => [y; z]) [(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)])
(listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A) (map (fun z : list MPropF * list MPropF => [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); z])
[(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)])).
destruct p. apply i. clear i. clear s. exists (Γ0 ++ Γ1, Δ0 ++ A :: Δ1). split. reflexivity.
unfold listInsertsL_Seqs.
pose (InT_map_iff (fun y : list MPropF => (Γ0 ++ Γ1, y)) (listInserts (Δ0 ++ Δ1) A) (Γ0 ++ Γ1, Δ0 ++ A :: Δ1)).
destruct p. apply i. clear s. clear i. exists (Δ0 ++ A :: Δ1). split. reflexivity.
unfold listInserts.
pose (InT_map_iff (fun y : list MPropF * list MPropF => fst y ++ A :: snd y)
(proj1_sigT2 (list_of_splits (Δ0 ++ Δ1))) (Δ0 ++ A :: Δ1)). destruct p. clear s.
apply i. clear i. exists (Δ0,Δ1). simpl. split. reflexivity. destruct (list_of_splits (Δ0 ++ Δ1)).
simpl. pose (i Δ0 Δ1). apply In_InT_seqs. rewrite <- i0. reflexivity.
Defined.
Definition ImpL_help02 : forall Γ0 Γ1 Δ0 Δ1 A B l n,
ImpLRule [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)] (Γ0 ++ (Imp A B) :: Γ1, Δ0 ++ Δ1) ->
(length Γ0 = n) ->
(In ((Imp A B), S n) l) ->
InT [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)] (prems_Imp_L l (Γ0 ++ (Imp A B) :: Γ1, Δ0 ++ Δ1)).
Proof.
induction l ; intros.
- inversion H1.
- destruct a. destruct m.
* subst. apply In_InT_pair in H1. inversion H1. subst. inversion H2. subst. apply InT_In in H2.
assert (J1: length Γ0 = length Γ0). reflexivity.
pose (IHl _ H J1 H2). simpl. destruct n0. assumption. assumption.
* subst. apply In_InT_pair in H1. inversion H1. subst. inversion H2. subst. apply InT_In in H2.
assert (J1: length Γ0 = length Γ0). reflexivity.
pose (IHl _ H J1 H2). simpl. destruct n0. assumption. assumption.
* apply In_InT_pair in H1. inversion H1.
+ subst. inversion H3. subst.
pose (ImpL_help002 Γ0 Γ1 Δ0 Δ1 A B). simpl in i.
apply InT_or_app. left.
apply InT_trans_flatten_list with (bs:=(flatten_list
(map (fun y : list MPropF * list MPropF => [[y; (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]])
(listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A)))). assumption. apply InT_map_iff.
exists (Γ0 ++ B :: Γ1, Δ0 ++ Δ1). split.
destruct (eq_dec_form (A --> B) (A --> B)).
apply InT_flatten_list_InT_elem in i. destruct i. destruct p.
assert ((listInsertsL_Seqs (fst
(nth_split (length Γ0) (remove_nth (S (length Γ0)) (A --> B) (fst (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)))) ++
snd
(nth_split (length Γ0) (remove_nth (S (length Γ0)) (A --> B) (fst (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)))))
(snd (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)) A) = (listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A)).
simpl (snd (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)).
simpl (fst (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)). repeat rewrite effective_remove_nth.
assert (length Γ0 = length Γ0). reflexivity.
pose (@nth_split_length_id Γ0 Γ1 (length Γ0) H0). destruct a. rewrite H2. rewrite H4.
reflexivity. rewrite H0.
apply redundant_flatten_list. exfalso. auto.
destruct (eq_dec_form (A --> B) (A --> B)). simpl (snd (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)).
simpl (fst (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)). repeat rewrite effective_remove_nth.
assert (length Γ0 = length Γ0). reflexivity.
pose (@nth_split_length_id Γ0 Γ1 (length Γ0) H0). destruct a. rewrite H2. rewrite H4.
apply InT_eq. exfalso. auto.
+ subst. assert (J1: (length Γ0) = (length Γ0)). reflexivity. apply InT_In in H3.
pose (IHl (length Γ0) H J1 H3). simpl. destruct n0. assumption. apply InT_or_app. auto.
* subst. apply In_InT_pair in H1. inversion H1. subst. inversion H2. subst. apply InT_In in H2.
assert (J1: length Γ0 = length Γ0). reflexivity.
pose (IHl _ H J1 H2). simpl. destruct n0. assumption. assumption.
Defined.
Definition ImpL_help2 : forall prem1 prem2 s, ImpLRule [prem1; prem2] s ->
InT [prem1; prem2] (prems_Imp_L (pos_top_imps (fst s)) s).
Proof.
intros. inversion H. subst. simpl.
pose (@ImpL_help02 Γ0 Γ1 Δ0 Δ1 A B (pos_top_imps (Γ0 ++ (Imp A B) :: Γ1)) (length Γ0)). apply i ; try assumption.
reflexivity. apply Good_pos_in_pos_top_imps.
Defined.
Definition ImpL_help01 : forall prems s l, InT prems (prems_Imp_L l s) ->
(existsT2 n prem1 prem2 A B Γ0 Γ1 Δ0 Δ1,
(prems = [prem1; prem2]) /\
(In ((Imp A B), S n) l) /\
(prem1 = (Γ0 ++ Γ1, Δ0 ++ A :: Δ1)) /\
(prem2 = (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)) /\
(Δ0 ++ Δ1 = snd s) /\
(Γ0 = (fst (nth_split n (remove_nth (S n) (Imp A B) (fst s))))) /\
(Γ1 = (snd (nth_split n (remove_nth (S n) (Imp A B) (fst s)))))).
Proof.
intros prems s. destruct s. induction l1 ; intros X.
- simpl in X. inversion X.
- simpl (fst (l, l0)). destruct a as [m n]. destruct m as [n0 | | | ].
* simpl in X. destruct n.
+ pose (s := IHl1 X). repeat destruct s. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
+ pose (s := IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
* simpl in X. destruct n.
+ pose (s := IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
+ pose (s := IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
* destruct n.
+ pose (s := IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
+ apply InT_app_or in X. destruct X.
{ simpl (fst (l, l0)) in i. simpl (snd (l, l0)) in i.
apply InT_flatten_list_InT_elem in i. destruct i. destruct p.
apply InT_map_iff in i0. destruct i0. destruct p.
inversion i0. subst. apply InT_map_iff in i. destruct i.
destruct p. unfold listInsertsL_Seqs in i. apply InT_map_iff in i.
destruct i. destruct p. subst. unfold listInserts in i. apply InT_map_iff in i. destruct i.
destruct p. destruct x. subst. destruct (list_of_splits l0). simpl in i. exists n.
simpl (fst (l2, l3)). simpl (snd (l2, l3)).
exists (fst (nth_split n (remove_nth (S n) (m1 --> m2) l)) ++
snd (nth_split n (remove_nth (S n) (m1 --> m2) l)), l2 ++ m1 :: l3).
exists (fst
(nth_split n
match n with
| 0 =>
match l with
| [] => []
| B0 :: tl => if eq_dec_form (m1 --> m2) B0 then tl else B0 :: tl
end
| S _ => match l with
| [] => []
| B0 :: tl => B0 :: remove_nth n (m1 --> m2) tl
end
end) ++
m2
:: snd
(nth_split n
match n with
| 0 =>
match l with
| [] => []
| B0 :: tl => if eq_dec_form (m1 --> m2) B0 then tl else B0 :: tl
end
| S _ => match l with
| [] => []
| B0 :: tl => B0 :: remove_nth n (m1 --> m2) tl
end
end), l0).
exists m1. exists m2. exists (fst (nth_split n (remove_nth (S n) (m1 --> m2) l))).
exists (snd (nth_split n (remove_nth (S n) (m1 --> m2) l))).
exists l2. exists l3. simpl (snd (l, l0)). simpl (fst (l, l0)).
repeat split ; try auto. apply in_eq. simpl. assert (l2 ++ l3 = l0). rewrite i1. apply InT_In.
assumption. rewrite <- H. reflexivity. rewrite i1. apply InT_In. assumption. subst. inversion H0. }
{ pose (IHl1 i). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto. }
* simpl in X. destruct n.
+ pose (IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
+ pose (IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
Defined.
Definition ImpL_help1 : forall prems s, InT prems (prems_Imp_L (pos_top_imps (fst s)) s) ->
ImpLRule prems s.
Proof.
intros prem s X. pose (s0 := @ImpL_help01 _ _ _ X). destruct s0 as (n&Hn&A&B&Γ0&Γ1&Δ0& Δ1&e1&Heq&i&p). destruct s as (l&l0). simpl in X.
intuition. subst.
apply In_pos_top_imps_split_l in i.
simpl (fst (l, l0)). simpl in H0. subst.
simpl (fst (l, Δ1 ++ e1)) in X.
destruct i as (l0&l1&Heq1&Heq3&Heq2&Heq4).
subst.
simpl (fst (l, Δ1 ++ e1)) in Heq1.
simpl (fst (l, Δ1 ++ e1)) in Heq2.
remember (fst (nth_split (length l0) (remove_nth (S (length l0)) (B --> Γ0) l))) as Γ0'.
remember (snd (nth_split (length l0) (remove_nth (S (length l0)) (B --> Γ0) l))) as Γ1'.
rewrite Heq1, Heq2.
apply ImpLRule_I.
Defined.
Definition finite_ImpL_premises_of_S : forall (s : Seq), existsT2 listImpLprems,
(forall prems, ((ImpLRule prems s) -> (InT prems listImpLprems)) *
((InT prems listImpLprems) -> (ImpLRule prems s))).
Proof.
intros. destruct s.
exists (prems_Imp_L (pos_top_imps l) (l,l0)).
intros. split ; intro.
- inversion H. subst.
pose (@ImpL_help2 (Γ0 ++ Γ1, Δ0 ++ A :: Δ1) (Γ0 ++ B :: Γ1, Δ0 ++ Δ1) (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)). apply i.
assumption.
- pose (@ImpL_help1 prems (l, l0)). apply i. assumption.
Defined.
(* Now let us tackle the GLR rule. *)
Fixpoint prems_Box_R (l : list MPropF) (s : Seq) : list (list Seq) :=
match l with
| nil => nil
| h :: t => match h with
| Box A => [((XBoxed_list (top_boxes (fst s))) ++ [Box A], [A])] :: (prems_Box_R t s)
| _ => prems_Box_R t s
end
end.
Definition GLR_help01 : forall prems s (l : list MPropF), InT prems (prems_Box_R l s) ->
(existsT2 (A : MPropF),
(In (Box A) l) /\
(prems = [(XBoxed_list (top_boxes (fst s)) ++ [Box A], [A])])).
Proof.
intros prems s. destruct s. induction l1 ; intros X.
- simpl in X. inversion X.
- simpl in X. destruct a.
* apply IHl1 in X. destruct X as (x & i & p). subst.
exists x. repeat split ; try auto ; try apply in_cons ; try assumption.
* apply IHl1 in X. destruct X as (x & i & p). subst.
exists x. repeat split ; try auto ; try apply in_cons ; try assumption.
* apply IHl1 in X. destruct X as (x & i & p). subst.
exists x. repeat split ; try auto ; try apply in_cons ; try assumption.
* inversion X.
+ subst. eexists a. repeat split ; try auto ; try apply in_eq.
+ apply IHl1 in H0. decompose record H0. subst.
exists x. repeat split ; try auto ; try apply in_cons ; try assumption.
Defined.
Definition GLR_help1 : forall prems s, InT prems (prems_Box_R (top_boxes (snd s)) s) ->
GLRRule prems s.
Proof.
intros prems s X. destruct (@GLR_help01 _ _ _ X) as (x&i&Heq). destruct s. simpl in X.
subst. simpl in i. assert (In (Box x) l0). apply top_boxes_incl_list.
assumption. apply in_splitT in H. destruct H. repeat destruct s.
rewrite e. apply GLRRule_I. intro. intros. apply in_top_boxes in H.
destruct H. repeat destruct s. repeat destruct p. exists x2. assumption.
simpl. apply top_boxes_nobox_gen_ext.
Defined.
Definition GLR_help02 : forall Γ Δ0 Δ1 BΓ A l, GLRRule [(XBoxed_list BΓ ++ [Box A], [A])] (Γ, Δ0 ++ Box A :: Δ1) ->
(is_Boxed_list BΓ) ->
(nobox_gen_ext BΓ Γ) ->
(In (Box A) l) ->
InT [(XBoxed_list BΓ ++ [Box A], [A])] (prems_Box_R l (Γ, Δ0 ++ Box A :: Δ1)).
Proof.
induction l ; intros.
- inversion H0.
- simpl. destruct a as [n | | | ].
* assert (InT (Box A) (# n :: l)). apply in_splitT in H0. destruct H0. destruct s. rewrite e.
apply InT_or_app. right. apply InT_eq. inversion H1. inversion H3. apply InT_In in H3.
pose (IHl X H X0 H3). assumption.
* assert (InT (Box A) (⊥ :: l)). apply in_splitT in H0. destruct H0. destruct s. rewrite e.
apply InT_or_app. right. apply InT_eq. inversion H1. inversion H3. apply InT_In in H3.
pose (IHl X H X0 H3). assumption.
* assert (InT (Box A) (a1 --> a2 :: l)). apply in_splitT in H0. destruct H0. destruct s. rewrite e.
apply InT_or_app. right. apply InT_eq. inversion H1. inversion H3. apply InT_In in H3.
pose (IHl X H X0 H3). assumption.
* assert (InT (Box A) (Box a :: l)). apply in_splitT in H0. destruct H0. destruct s. rewrite e.
apply InT_or_app. right. apply InT_eq. inversion H1.
+ subst. inversion H3. subst. pose (nobox_gen_ext_top_boxes_identity X0 H). rewrite e.
apply InT_eq.
+ subst. apply InT_In in H3. pose (IHl X H X0 H3). apply InT_cons. assumption.
Defined.
Definition GLR_help2 : forall prem s, GLRRule [prem] s ->
InT [prem] (prems_Box_R (top_boxes (snd s)) s).
Proof.
intros. inversion X. subst. simpl.
pose (@GLR_help02 Γ0 Δ0 Δ1 BΓ A (top_boxes (Δ0 ++ Box A :: Δ1))). apply i ; try assumption.
rewrite top_boxes_distr_app. simpl. apply in_or_app. right. apply in_eq.
Defined.
Definition finite_GLR_premises_of_S : forall (s : Seq), existsT2 listGLRprems,
(forall prems, ((GLRRule prems s) -> (InT prems listGLRprems)) *
((InT prems listGLRprems) -> (GLRRule prems s))).
Proof.
intros. destruct s.
exists (prems_Box_R (top_boxes l0) (l,l0)).
intros. split ; intro.
- inversion X. subst.
pose (@GLR_help2 (XBoxed_list BΓ ++ [Box A], [A]) (l, Δ0 ++ Box A :: Δ1)). apply i.
assumption.
- pose (@GLR_help1 prems (l, l0)). apply g. assumption.
Defined.
(* Obviously, we can obtain the same result for the initial sequents. *)
Definition finite_IdP_premises_of_S : forall (s : Seq), existsT2 listIdPprems,
(forall prems, ((IdPRule prems s) -> (InT prems listIdPprems)) *
((InT prems listIdPprems) -> (IdPRule prems s))).
Proof.
intros s. destruct (dec_IdP_rule s).
- exists [[]]. intros. split ; intro.
* inversion H. subst. apply InT_eq.
* inversion H. subst. assumption. inversion H1.
- exists []. intros. split ; intro.
* inversion H. subst. exfalso. apply f. assumption.
* inversion H.
Defined.
Definition finite_IdB_premises_of_S : forall (s : Seq), existsT2 listIdBprems,
(forall prems, ((IdBRule prems s) -> (InT prems listIdBprems)) *
((InT prems listIdBprems) -> (IdBRule prems s))).
Proof.
intros s. destruct (dec_IdB_rule s).
- exists [[]]. intros. split ; intro.
* inversion H. subst. apply InT_eq.
* inversion H. subst. assumption. inversion H1.
- exists []. intros. split ; intro.
* inversion H. subst. exfalso. apply f. assumption.
* inversion H.
Defined.
Definition finite_BotL_premises_of_S : forall (s : Seq), existsT2 listBotLprems,
(forall prems, ((BotLRule prems s) -> (InT prems listBotLprems)) *
((InT prems listBotLprems) -> (BotLRule prems s))).
Proof.
intros. destruct (dec_BotL_rule s).
- exists [[]]. intros. split ; intro.
* inversion H. subst. apply InT_eq.
* inversion H. subst. assumption. inversion H1.
- exists []. intros. split ; intro.
* inversion H. subst. exfalso. apply f. assumption.
* inversion H.
Defined.
(* Now that we have the list of all premises of a sequent via all rules, we can combine
them all to obtain the list of all potential premises via the GLS calculus. *)
Definition finite_premises_of_S : forall (s : Seq), existsT2 listprems,
(forall prems, ((GLS_rules prems s) -> (InT prems listprems)) *
((InT prems listprems) -> (GLS_rules prems s))).
Proof.
intro s.
destruct (dec_GLS_rules s).
- exists []. intros. split. intro. exfalso. apply f. exists prems. assumption.
intro. inversion H.
- pose (finite_IdP_premises_of_S s). destruct s1.
pose (finite_BotL_premises_of_S s). destruct s1.
pose (finite_ImpR_premises_of_S s). destruct s1.
pose (finite_ImpL_premises_of_S s). destruct s1.
pose (finite_GLR_premises_of_S s). destruct s1.
exists (x ++ x0 ++ x1 ++ x2 ++ x3).
split.
* intro RA. inversion RA.
{ inversion H. subst. pose (p []). destruct p4. apply InT_or_app. auto. }
{ inversion H. subst. pose (p0 []). destruct p4. apply InT_or_app. right. apply InT_or_app. auto. }
{ inversion H. subst. pose (p1 [(Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1)]). destruct p4.
apply InT_or_app. right. apply InT_or_app. right. apply InT_or_app. auto. }
{ inversion H. subst. pose (p2 [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]).
destruct p4. apply InT_or_app. right. apply InT_or_app. right.
apply InT_or_app. right. apply InT_or_app. auto. }
{ inversion X. subst. pose (p3 [(XBoxed_list BΓ ++ [Box A], [A])]).
destruct p4. apply InT_or_app. right. apply InT_or_app.
right. apply InT_or_app. right. apply InT_or_app. right. auto. }
* intro. apply InT_app_or in H. destruct H.
{ apply p in i. apply IdP ; try intro ; try apply f ; try auto ; try assumption. }
{ apply InT_app_or in i. destruct i.
- apply p0 in i. apply BotL ; try intro ; try apply f ; try auto ; try assumption.
- apply InT_app_or in i. destruct i.
+ apply p1 in i. apply ImpR ; try intro ; try apply f ; try auto ; try assumption.
+ apply InT_app_or in i. destruct i.
* apply p2 in i. apply ImpL ; try intro ; try apply f ; try auto ; try assumption.
* apply p3 in i. apply GLR ; try intro ; try apply f ; try auto ; try assumption. }
Defined.
(* The next definitions "flattens" a list of lists of premises to a list of premises.*)
Definition list_of_premises (s : Seq) : list Seq :=
flatten_list (proj1_sigT2 (finite_premises_of_S s)).
Lemma InT_list_of_premises_exists_prems : forall s prem, InT prem (list_of_premises s) ->
existsT2 prems, (InT prem prems) * (GLS_rules prems s).
Proof.
intros s prem X. unfold list_of_premises in X.
apply InT_flatten_list_InT_elem in X. destruct X. destruct p.
exists x. split. auto.
destruct (finite_premises_of_S s). pose (p x). destruct p0. apply g. assumption.
Qed.
Lemma exists_prems_InT_list_of_premises : forall s prem,
(existsT2 prems, (InT prem prems) * (GLS_rules prems s)) ->
InT prem (list_of_premises s).
Proof.
intros. destruct X. destruct p. unfold list_of_premises. destruct (finite_premises_of_S s).
pose (p x). destruct p0. apply InT_trans_flatten_list with (bs:=x). assumption. simpl. apply i0.
assumption.
Qed.
(* Decidability *)
Lemma derrec_composition: forall X (rules : list X -> X -> Type) (prems0 prems1 : X -> Prop) (concl : X),
(forall leaf : X, prems0 leaf -> (derrec rules prems1 leaf)) ->
(derrec rules prems0 concl) ->
(derrec rules prems1 concl).
Proof.
intros X rules prems0 prems1 concl HypLeaves der. apply derrec_all_rect with
(Q:= fun x => (derrec rules prems1 x))
in der.
- exact der.
- intros. apply HypLeaves. assumption.
- intros ps concl0 RA ders IH. apply dersrec_all in IH. apply derI with (ps:=ps) ; assumption.
Qed.
Theorem derrec_leaves_thms : forall (s0 s1 : rel (list MPropF)),
(derrec GLS_rules (fun x => (x = s0)) s1) ->
(derrec GLS_rules (fun _ => False) s0) ->
(derrec GLS_rules (fun _ => False) s1).
Proof.
intros s0 s1 leaves pfs.
pose (@derrec_composition (rel (list MPropF)) GLS_rules (fun x => (x = s0)) (fun _ => False)
s1). apply d.
- intros. inversion H. assumption.
- assumption.
Qed.
Theorem GLS_dec_der : forall s,
(derrec GLS_rules (fun _ => False) s) + ((derrec GLS_rules (fun _ => False) s) -> False).
Proof.
apply less_thanS_strong_inductionT.
intros s IH. pose (finite_premises_of_S s). destruct s0.
destruct (dec_init_rules s).
- left. destruct s0. destruct s0. 1,3: apply derI with (ps:=[]) ; auto.
2,4: apply dlNil. apply IdP ; auto. apply BotL ; auto.
inversion i ; subst. apply Id_all_form.
- assert (forall prems, (InT prems x) -> ((dersrec GLS_rules (fun _ => False) prems) +
((dersrec GLS_rules (fun _ => False) prems) -> False))).
{ intros. pose (p prems). destruct p0. apply g in H. inversion H.
- inversion H0. subst. left ; apply dlNil.
- inversion H0. subst. left ; apply dlNil.
- inversion H0. subst.
assert (J1: (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1) << (Γ0 ++ Γ1, Δ0 ++ A --> B :: Δ1)).
apply ImpR_applic_reduces_measure ; auto. destruct (IH _ J1).
* left ; apply dlCons ; auto ; apply dlNil.
* right. intro. inversion X. subst. auto.
- inversion H0. subst.
destruct (ImpL_applic_reduces_measure H0). destruct (IH _ l) ; destruct (IH _ l0).
* left. apply dlCons ; auto ; apply dlCons ; auto ; apply dlNil.
* right. intro. inversion X. subst. inversion X1. subst. auto.
* right. intro. inversion X. subst. auto.
* right. intro. inversion X. subst. auto.
- inversion X. subst.
assert (J1: (XBoxed_list BΓ ++ [Box A], [A]) << (Γ0, Δ0 ++ Box A :: Δ1)).
apply (GLR_applic_reduces_measure X) ; auto. destruct (IH _ J1).
* left. apply dlCons ; auto ; apply dlNil.
* right. intro. inversion X1. subst. auto. }
assert ((existsT2 prems, (InT prems x) * (dersrec GLS_rules (fun _ => False) prems)) +
(forall prems, (InT prems x) -> ((dersrec GLS_rules (fun _ => False) prems) -> False))).
{ assert ((existsT2 prems, (InT prems x) * (dersrec GLS_rules (fun _ => False) prems)) +
((existsT2 prems, (InT prems x) * (dersrec GLS_rules (fun _ => False) prems)) -> False)).
{ pose (@forall_elem_list _ x (fun y =>
dersrec GLS_rules (fun _ : rel (list MPropF) => False) y) X). destruct s0.
- left. auto.
- right. auto. }
destruct X0.
- destruct s0. destruct p0. left. exists x0. auto.
- right. intros. firstorder. }
destruct X0.
++ destruct s0. destruct p0. pose (p x0). destruct p0. apply g in i. left. apply derI with (ps:=x0) ; assumption.
++ pose (dec_init_rules s). repeat destruct s0.
* left. apply derI with (ps:=[]) ; [apply IdP ; assumption | apply dlNil].
* left. inversion i ; subst. apply Id_all_form.
* left. apply derI with (ps:=[]) ; [apply BotL ; assumption | apply dlNil].
* right. intro der. inversion der.
+ inversion H.
+ subst. inversion X0.
{ inversion H. subst. apply f. auto. }
{ inversion H. subst. apply f. auto. }
{ subst. pose (f0 ps). apply f2. pose (p ps). destruct p0. apply i. assumption.
assumption. }
{ subst. pose (f0 ps). apply f2. pose (p ps). destruct p0. apply i. assumption.
assumption. }
{ subst. pose (f0 ps). apply f2. pose (p ps). destruct p0. apply i. assumption.
assumption. }
Qed.
Export ListNotations.
Require Import PeanoNat.
Require Import Lia.
Require Import Coq.Arith.Compare_dec.
Require Import GLS_calcs.
Require Import GLS_termination_measure.
Require Import GLS_exch.
Require Import GLS_ctr.
Require Import GLS_wkn.
Require Import GLS_dec.
Require Import GLS_inv_ImpR_ImpL.
Set Implicit Arguments.
Lemma forall_elem_list : forall {A : Type} (l : list A) (P : A -> Type),
(forall a, (InT a l) -> ((P a) + ((P a) -> False))) ->
(existsT2 a, (InT a l) * (P a)) + ((existsT2 a, (InT a l) * (P a)) -> False).
Proof.
induction l.
- intros. right. intros. destruct X0. destruct p. inversion i.
- intros. pose (X a). assert (InT a (a :: l)). apply InT_eq. apply s in X0. destruct X0.
* left. exists a. split. apply InT_eq. assumption.
* assert (forall a : A, InT a l -> P a + (P a -> False)).
{ intros. apply X. apply InT_cons. assumption. }
pose (IHl P X0). destruct s0.
+ left. destruct s0. exists x. split. apply InT_cons. firstorder. firstorder.
+ right. intro. destruct X1. destruct p. inversion i. subst. firstorder. subst. firstorder.
Qed.
(* The list premises of a sequent *)
Definition proj1_sigT2 {A : Type} (P : A -> Type) (e:sigT P) := match e with
| existT _ a b => a
end.
Definition proj2_sigT2 {A : Type} (P : A -> Type) (e : sigT P) :=
match e return (P (proj1_sigT2 e)) with
| existT _ a b => b
end.
Lemma In_InT : forall (A : MPropF) l, In A l -> InT A l.
Proof.
intros. apply in_splitT in H. destruct H. destruct s. subst. apply InT_or_app. right.
apply InT_eq.
Qed.
Definition In_InT_pair : forall (A : MPropF) (n : nat) l, In (A, n) l -> InT (A, n) l.
Proof.
induction l.
- intro. inversion H.
- intro. assert ({(A, n) = a} + {(A, n) <> a}). destruct a.
destruct (eq_dec_form A m). subst. destruct (Nat.eq_dec n n0). subst. auto.
right. intro. apply n1. inversion H0. auto. right. intro. inversion H0.
auto. destruct H0. subst. apply InT_eq. apply InT_cons. apply IHl.
inversion H. exfalso. auto. assumption.
Defined.
Definition InT_map_iff : forall {A B : Type} (f : A -> B) (l : list A) (y : B),
(InT y (map f l) -> (existsT2 x : A, (f x = y) * InT x l)) *
((existsT2 x : A, (f x = y) * InT x l) -> InT y (map f l)).
Proof.
induction l.
- intros. simpl. split. intro. inversion X. intro. destruct X. destruct p. inversion i.
- simpl. intros. split.
* intro. inversion X.
+ subst. exists a. split ; [ reflexivity | apply InT_eq].
+ subst. pose (IHl y). destruct p. apply s in X0. destruct X0. destruct p. exists x.
split. assumption. apply InT_cons. assumption.
* intro. pose (IHl y). destruct p. clear s. pose (proj2_sigT2 X).
destruct p. inversion i0. subst. rewrite <- e. rewrite <- H0. apply InT_eq.
subst. assert (existsT2 x : A, (f x = y) * InT x l). exists (proj1_sigT2 X).
split ; assumption. apply i in X1. apply InT_cons. assumption.
Defined.
Fixpoint top_imps (l : list MPropF) : list MPropF :=
match l with
| nil => nil
| h :: t => match h with
| Imp A B => (Imp A B) :: top_imps t
| _ => top_imps t
end
end.
Fixpoint pos_top_imps (l : list MPropF) : (list ((MPropF) * nat)) :=
match l with
| nil => nil
| h :: t => match h with
| Imp A B => (Imp A B, 1) :: (map (fun y => (fst y, S (snd y))) (pos_top_imps t))
| _ => (map (fun y => (fst y, S (snd y))) (pos_top_imps t))
end
end.
Lemma le_False_lt : forall n m, ((n <= m) -> False) -> (m < n).
Proof.
induction n.
- intros. exfalso. apply H. apply le_0_n.
- induction m.
* intros. lia.
* intros. rewrite <- Nat.succ_lt_mono. apply IHn. intro. apply H. lia.
Qed.
Definition top_boxes_nobox_gen_ext : forall l, nobox_gen_ext (top_boxes l) l.
Proof.
induction l.
- simpl. apply univ_gen_ext_nil.
- destruct a ; simpl.
* apply univ_gen_ext_extra. intro. inversion X. inversion H. assumption.
* apply univ_gen_ext_extra. intro. inversion X. inversion H. assumption.
* apply univ_gen_ext_extra. intro. inversion X. inversion H. assumption.
* apply univ_gen_ext_cons. assumption.
Defined.
Lemma nobox_gen_ext_top_boxes_identity : forall l0 l1, nobox_gen_ext l0 l1 ->
is_Boxed_list l0 ->
(l0 = top_boxes l1).
Proof.
intros l0 l1 X. induction X.
- intros. reflexivity.
- intro. simpl. destruct x as [n | | | ].
* exfalso. pose (H (# n)). assert (In # n (# n :: l)). apply in_eq. apply e in H0.
destruct H0. inversion H0.
* exfalso. pose (H (⊥)). assert (In (⊥) (⊥ :: l)). apply in_eq. apply e in H0.
destruct H0. inversion H0.
* exfalso. pose (H (x1 --> x2)). assert (In (x1 --> x2) (x1 --> x2 :: l)). apply in_eq. apply e in H0.
destruct H0. inversion H0.
* assert (l = top_boxes le). apply IHX. intro. intros. apply H. apply in_cons. assumption.
rewrite H0. reflexivity.
- simpl. destruct x.
* apply IHX.
* apply IHX.
* apply IHX.
* exfalso. apply p. exists x. reflexivity.
Qed.
Fixpoint flatten_list {A : Type} (l : list (list A)) : list A :=
match l with
| [ ] => [ ]
| h :: t => h ++ (flatten_list t)
end
.
Definition InT_flatten_list_InT_elem {A : Type} : forall (l : list (list A)) b,
InT b (flatten_list l) -> (existsT2 bs, (InT b bs) * (InT bs l)).
Proof.
induction l.
- intros. simpl in X. inversion X.
- intros. simpl in X. apply InT_app_or in X. destruct X.
* exists a. split ; [assumption | apply InT_eq].
* pose (IHl b). apply s in i. destruct i. destruct p. exists x. split ; [assumption | apply InT_cons ; assumption].
Defined.
Lemma redundant_flatten_list : forall ls (s : Seq), map (fun z : list MPropF * list MPropF => [z;s]) ls =
flatten_list (map (fun y : list MPropF * list MPropF => [[y;s]]) ls).
Proof.
induction ls.
- intros. simpl. reflexivity.
- simpl. intros. rewrite IHls. reflexivity.
Qed.
Definition InT_trans_flatten_list {A : Type} : forall (l : list (list A)) bs b,
(InT b bs) -> (InT bs l) -> (InT b (flatten_list l)).
Proof.
induction l.
- intros. inversion X0.
- intros. inversion X0.
* subst. simpl. apply InT_or_app. auto.
* subst. simpl. apply InT_or_app. right. pose (IHl bs b X X1) ; assumption.
Defined.
(* In this file we prove that each sequent Γ |- Δ has a derivation (not proof) D in
GLS of maximal height: all derivations in GLS of this sequent must have an
inferior or equal height to that of D.
This result can be understood as claiming that the proof search defined by GLS
terminates. *)
(* The next lemma claims that for each sequent s there is a derivation of that sequent. *)
Lemma der_s_inhabited : forall s, inhabited (GLS_drv s).
Proof.
intros s.
pose (@dpI Seq GLS_rules (fun _ : Seq => True) s).
assert (H: (fun _ : Seq => True) s). apply I. apply d in H. apply inhabits. assumption.
Qed.
(* The next definition deals with the property of being a derivation D0 of maximal height
for the sequent s. *)
Definition is_mhd (s: Seq) (D0 : GLS_drv s): Prop :=
forall (D1 : GLS_drv s), derrec_height D1 <= derrec_height D0.
(* The next lemma says that given a list and an element, there are only finitely many
ways to insert this element in a list. *)
Definition list_of_splits : forall (l : list MPropF), existsT2 listSplits,
forall l1 l2, ((l1 ++ l2 = l) <-> In (l1, l2) listSplits).
Proof.
induction l.
- exists [([],[])]. intros. destruct l1. split ; intro. simpl in H. rewrite H. apply in_eq.
simpl in H. destruct H. inversion H. reflexivity. inversion H. split ; intro.
simpl in H. inversion H. simpl. inversion H. inversion H0. inversion H0.
- destruct IHl. exists ([([], a :: l)] ++ (map (fun y => (a :: (fst y), snd y)) x)).
intros. split ; intro.
* apply in_or_app. destruct l1. simpl. left. left. simpl in H. rewrite H.
reflexivity. simpl in H. inversion H. subst. right. pose (i l1 l2). destruct i0.
assert (l1 ++ l2 = l1 ++ l2). reflexivity. apply H0 in H2.
pose (in_map (fun y : list MPropF * list MPropF => (a :: fst y, snd y)) x (l1, l2) H2).
simpl in i. assumption.
* simpl in H. destruct H. inversion H. simpl. reflexivity. rewrite in_map_iff in H.
destruct H. destruct H. inversion H. subst. simpl. pose (i (fst x0) (snd x0)).
destruct i0. assert ((fst x0, snd x0) = x0). destruct x0. simpl. reflexivity.
rewrite H3 in H2. apply H2 in H0. rewrite H0. reflexivity.
Defined.
Definition listInserts l (A : MPropF) := map (fun y => (fst y) ++ A :: (snd y)) (proj1_sigT2 (list_of_splits l)).
(* The next two lemmas make sure that the definition listInserts indeed captures the intended
list. *)
Lemma listInserts_In : forall l (A: MPropF) l1 l2, ((l1 ++ l2 = l) -> In (l1 ++ A :: l2) (listInserts l A)).
Proof.
intros. unfold listInserts. assert (In (l1, l2) (proj1_sigT2 (list_of_splits l))). destruct (list_of_splits l).
simpl. pose (i l1 l2). apply i0. assumption.
pose (in_map (fun y : list MPropF * list MPropF => fst y ++ A :: snd y) (proj1_sigT2 (list_of_splits l)) (l1, l2) H0).
simpl in i. assumption.
Qed.
Lemma In_listInserts : forall l (A: MPropF) l0, In l0 (listInserts l A) ->
(exists l1 l2, prod (l1 ++ l2 = l) (l1 ++ A :: l2 = l0)).
Proof.
intros. unfold listInserts in H. destruct (list_of_splits l). simpl in H. rewrite in_map_iff in H.
destruct H. destruct H. subst. exists (fst x0). exists (snd x0). split. apply i.
destruct x0. simpl. assumption. reflexivity.
Qed.
(* The definitions below allow you to create the list of all sequents given two lists and a
formula to insert in one of them. *)
Definition listInsertsR_Seqs (Γ Δ : list MPropF) (A : MPropF) := map (fun y => (y, Δ)) (listInserts Γ A).
Definition listInsertsL_Seqs (Γ Δ : list MPropF) (A : MPropF) := map (fun y => (Γ, y)) (listInserts Δ A).
(* The next definition allows one to create all sequents *)
Definition listInsertsRL_Seqs (Γ Δ : list MPropF) (A B : MPropF) :=
flatten_list (map (fun z => (map (fun y => (z, y)) (listInserts Δ B))) (listInserts Γ A)).
(* Now we can prove that a sequent has only finitely many potential premises via the ImpR rules.
The next definition simply takes a list of formulae l and a sequent s. It outputs a list of sequents.
These sequents are generated when there is an implication (Imp A B) encountered in l. With such an
implication, the function will stack the list of all insertions of A on the left of s and of B on
the right of s (roughly: in fact you need to destroy all such implications on the right to get an ImpRRule
premise), and then continues computing on the rest of l. *)
Fixpoint remove_nth (n: nat) (A : MPropF) l:=
match n with
| 0 => l
| 1 => match l with
| [] => []
| B::tl => if (eq_dec_form A B) then tl else B:: tl
end
| S m => match l with
| [] => []
| B::tl => B::(remove_nth m A tl)
end
end.
Fixpoint nth_split (n : nat) (l : list MPropF) : (list MPropF * list MPropF) :=
match n with
| 0 => ([], l)
| 1 => match l with
| [] => ([], [])
| B::tl => ([B] , tl)
end
| S m => match l with
| [] => ([], [])
| B::tl => (B :: (fst (nth_split m tl)), snd (nth_split m tl))
end
end.
Fixpoint prems_Imp_R (l : list ((MPropF) * nat)) (s : Seq) : list Seq :=
match l with
| nil => nil
| (C, n) :: t => match n with
| 0 => prems_Imp_R t s
| S m => match C with
| Imp A B => (listInsertsR_Seqs (fst s)
((fst (nth_split m (remove_nth (S m) C (snd s)))) ++
B :: (snd (nth_split m (remove_nth (S m) C (snd s)))))
A)
++ (prems_Imp_R t s)
| _ => prems_Imp_R t s
end
end
end.
Lemma nth_split_length : forall (l0 l1 : list MPropF), (nth_split (length l0) (l0 ++ l1)) = (l0, l1).
Proof.
induction l0.
- intros. simpl. reflexivity.
- intros. pose (IHl0 l1). simpl (length (a :: l0)). simpl ((a :: l0) ++ l1).
simpl. destruct l0.
* simpl. reflexivity.
* assert (match length (m :: l0) with
| 0 => ([a], (m :: l0) ++ l1)
| S _ =>
(a :: fst (nth_split (length (m :: l0)) ((m :: l0) ++ l1)),
snd (nth_split (length (m :: l0)) ((m :: l0) ++ l1)))
end = (a :: fst (nth_split (length (m :: l0)) ((m :: l0) ++ l1)),
snd (nth_split (length (m :: l0)) ((m :: l0) ++ l1)))). reflexivity. rewrite H.
clear H. rewrite e. simpl. reflexivity.
Qed.
Lemma nth_split_idL : forall (l0 l1 : list MPropF), l0 = fst (nth_split (length l0) (l0 ++ l1)).
Proof.
induction l0.
- intros. simpl. reflexivity.
- intros. simpl (length (a :: l0)). pose (IHl0 l1). assert (fst (nth_split (S (length l0)) ((a :: l0) ++ l1)) =
a :: fst (nth_split (length l0) (l0 ++ l1))). simpl. destruct l0. simpl. reflexivity.
simpl. reflexivity. rewrite H. rewrite <- e. reflexivity.
Qed.
Lemma nth_split_idR : forall (l0 l1 : list MPropF), l1 = snd (nth_split (length l0) (l0 ++ l1)).
Proof.
induction l0.
- intros. simpl. reflexivity.
- intros. simpl (length (a :: l0)). pose (IHl0 l1). rewrite e. destruct l0.
* simpl. reflexivity.
* simpl (length (m :: l0)). simpl (S (S (length l0))).
simpl (length (m :: l0)) in e. rewrite <- e.
assert ((S (S (length l0))) = (length (a :: m :: l0))). simpl. reflexivity.
rewrite H. rewrite nth_split_length. simpl. reflexivity.
Qed.
Lemma nth_split_length_id : forall (l0 l1 : list MPropF) n, (length l0 = n) ->
(fst (nth_split n (l0 ++ l1)) = l0 /\
snd (nth_split n (l0 ++ l1)) = l1).
Proof.
induction l0.
- intros. simpl. split. simpl in H. subst. simpl. reflexivity. simpl in H. subst. simpl. reflexivity.
- intros. simpl in H. subst. split.
* assert (J1:length l0 = length l0). reflexivity. pose (@IHl0 l1 (length l0) J1).
destruct a0. simpl. destruct l0. simpl. reflexivity. simpl. rewrite <- H.
simpl. reflexivity.
* assert (J1:length l0 = length l0). reflexivity. pose (@IHl0 l1 (length l0) J1).
destruct a0. rewrite <- H0. simpl ((a :: l0) ++ snd (nth_split (length l0) (l0 ++ l1))).
assert ((nth_split (S (length l0)) (a :: l0 ++ snd (nth_split (length l0) (l0 ++ l1))) =
(a :: l0 ,snd (nth_split (length l0) (l0 ++ l1))))).
pose (nth_split_length (a :: l0) (snd (nth_split (length l0) (l0 ++ l1)))). apply e.
rewrite H1. simpl. reflexivity.
Qed.
Lemma In_pos_top_imps_0_False : forall l (A : MPropF), In (A, 0) (pos_top_imps l) -> False.
Proof.
- induction l.
* intros. inversion H.
* intros. simpl in H. destruct a.
+ simpl in H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e.
+ simpl in H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e.
+ simpl in H. destruct H. inversion H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e.
+ simpl in H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e.
Qed.
Lemma In_pos_top_imps_imp : forall l (A : MPropF) n, In (A, n) (pos_top_imps l) -> (existsT2 C D, A = Imp C D).
Proof.
induction l ; intros.
- simpl in H. inversion H.
- simpl in H. destruct a ; try apply IHl in H. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. inversion e. destruct x. subst. apply InT_In in i. apply IHl in i. assumption.
apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. inversion e. destruct x. subst. apply InT_In in i. apply IHl in i. assumption.
apply In_InT_pair in H. inversion H. subst. inversion H1. exists a1. exists a2. reflexivity.
subst. apply InT_map_iff in H1. destruct H1. destruct p. destruct x. simpl in e. inversion e.
subst. apply InT_In in i. apply IHl in i. assumption.
apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. inversion e. destruct x. subst. apply InT_In in i. apply IHl in i. assumption.
Qed.
Lemma In_pos_top_imps_In_l : forall l (A : MPropF) n, In (A, n) (pos_top_imps l) -> In A l.
Proof.
induction l.
- intros. simpl in H. destruct H.
- intros. simpl in H. destruct a.
* apply in_cons. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e. subst. apply InT_In in i. apply IHl in i.
assumption.
* apply in_cons. apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e. subst. apply InT_In in i. apply IHl in i.
assumption.
* inversion H.
+ inversion H0. subst. apply in_eq.
+ apply in_cons. apply In_InT_pair in H0. apply InT_map_iff in H0. destruct H0.
destruct p. destruct x. inversion e. subst. apply InT_In in i. apply IHl in i.
assumption.
* apply In_InT_pair in H. apply InT_map_iff in H. destruct H.
destruct p. destruct x. inversion e. subst. apply InT_In in i. apply IHl in i.
apply in_cons. assumption.
Qed.
Lemma effective_remove_nth : forall A l0 l1, ((remove_nth (S (length l0)) A (l0 ++ A :: l1)) = l0 ++ l1).
Proof.
induction l0.
- intros. simpl. destruct (eq_dec_form A A). reflexivity. exfalso. auto.
- intros. simpl (S (length (a :: l0))). repeat rewrite <- app_assoc. simpl ((a :: l0) ++ A :: l1).
pose (IHl0 l1). simpl ((a :: l0) ++ l1). rewrite <- e. simpl. reflexivity.
Qed.
Definition In_pos_top_imps_split_l : forall l (A : MPropF) n, In (A, S n) (pos_top_imps l) ->
existsT2 l0 l1, (l = l0 ++ A :: l1) /\
(length l0 = n) /\
(l0 = fst (nth_split n (remove_nth (S n) A l))) /\
(l1 = snd (nth_split n (remove_nth (S n) A l))).
Proof.
induction l.
- intros. simpl. exfalso. simpl in H. destruct H.
- intros. simpl in H. destruct a as [n0 | | | ].
* apply In_InT_pair in H. apply InT_map_iff in H. destruct H as ([m n1] & e & i).
simpl in e. inversion e. subst. destruct n. exfalso.
apply InT_In in i. apply In_pos_top_imps_0_False in i. assumption.
apply InT_In in i. pose (IHl A n i). destruct s as (x & x0 & e2 & e3 & e1 & e0).
subst. exists (# n0 :: x). exists x0. repeat split.
rewrite effective_remove_nth in e1. rewrite effective_remove_nth in e0.
assert (fst (# n0 :: fst (nth_split (S (length x)) (x ++ x0)), snd (nth_split (S (length x)) (x ++ x0))) =
# n0 :: fst (nth_split (S (length x)) (x ++ x0))). simpl. reflexivity.
assert (S (S (length x)) = S (length (# n0 :: x))). simpl. reflexivity.
rewrite H0. assert ((# n0 :: x ++ A :: x0) = ((# n0 :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H1. clear H0. clear H1. rewrite effective_remove_nth.
pose (nth_split_idL (# n0 :: x) x0). simpl (length (# n0 :: x)) in e2.
rewrite <- e2. reflexivity.
rewrite effective_remove_nth in e0. rewrite effective_remove_nth in e1.
assert (S (S (length x)) = S (length (# n0 :: x))). simpl. reflexivity.
rewrite H. assert ((# n0 :: x ++ A :: x0) = ((# n0 :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H0. clear H. clear H0. rewrite effective_remove_nth.
pose (nth_split_idR (# n0 :: x) x0). simpl (length (# n0 :: x)) in e2.
rewrite <- e2. reflexivity.
* apply In_InT_pair in H. apply InT_map_iff in H. destruct H as ([m n1] & e & i).
simpl in e. inversion e. subst. destruct n.
-- exfalso. apply InT_In in i. apply In_pos_top_imps_0_False in i. assumption.
-- apply InT_In in i. pose (IHl A n i). destruct s as (x & x0 & e2 & e3 & e1 & e0).
subst. exists (Bot :: x). exists x0. repeat split.
rewrite effective_remove_nth in e1. rewrite effective_remove_nth in e0.
assert (fst (Bot :: fst (nth_split (S (length x)) (x ++ x0)), snd (nth_split (S (length x)) (x ++ x0))) =
Bot :: fst (nth_split (S (length x)) (x ++ x0))). simpl. reflexivity.
assert (S (S (length x)) = S (length (Bot :: x))). simpl. reflexivity.
rewrite H0. assert ((Bot :: x ++ A :: x0) = ((Bot :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H1. clear H0. clear H1. rewrite effective_remove_nth.
pose (nth_split_idL (Bot :: x) x0). simpl (length (Bot :: x)) in e2.
rewrite <- e2. reflexivity.
rewrite effective_remove_nth in e0. rewrite effective_remove_nth in e1.
assert (S (S (length x)) = S (length (Bot :: x))). simpl. reflexivity.
rewrite H. assert ((Bot :: x ++ A :: x0) = ((Bot :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H0. clear H. clear H0. rewrite effective_remove_nth.
pose (nth_split_idR (Bot :: x) x0). simpl (length (Bot :: x)) in e2.
rewrite <- e2. reflexivity.
* apply In_InT_pair in H. inversion H.
+ inversion H1. subst. exists []. exists l. repeat split. simpl.
destruct (eq_dec_form (a1 --> a2) (a1 --> a2)). reflexivity. exfalso. auto.
+ subst. apply InT_map_iff in H1. destruct H1 as ([m n1] & e & i).
simpl in e. inversion e. subst. destruct n. exfalso.
apply InT_In in i. apply In_pos_top_imps_0_False in i. assumption.
apply InT_In in i. pose (IHl A n i). destruct s as (x & x0 & e2 & e3 & e1 & e0).
subst. exists (a1 --> a2 :: x). exists x0. repeat split.
rewrite effective_remove_nth in e1. rewrite effective_remove_nth in e0.
assert (fst (a1 --> a2 :: fst (nth_split (S (length x)) (x ++ x0)), snd (nth_split (S (length x)) (x ++ x0))) =
a1 --> a2 :: fst (nth_split (S (length x)) (x ++ x0))). simpl. reflexivity.
assert (S (S (length x)) = S (length (a1 --> a2 :: x))). simpl. reflexivity.
rewrite H1. assert ((a1 --> a2 :: x ++ A :: x0) = ((a1 --> a2 :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H2. clear H2. clear H1. rewrite effective_remove_nth.
pose (nth_split_idL (a1 --> a2 :: x) x0). simpl (length (a1 --> a2 :: x)) in e2.
rewrite <- e2. reflexivity.
rewrite effective_remove_nth in e0. rewrite effective_remove_nth in e1.
assert (S (S (length x)) = S (length (a1 --> a2 :: x))). simpl. reflexivity.
rewrite H0. assert ((a1 --> a2 :: x ++ A :: x0) = ((a1 --> a2 :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H1. clear H0. clear H1. rewrite effective_remove_nth.
pose (nth_split_idR (a1 --> a2 :: x) x0). simpl (length (a1 --> a2 :: x)) in e2.
rewrite <- e2. reflexivity.
* apply In_InT_pair in H. apply InT_map_iff in H. destruct H as ([m n1] & e & i).
simpl in e. inversion e. subst. destruct n. exfalso.
apply InT_In in i. apply In_pos_top_imps_0_False in i. assumption.
apply InT_In in i. pose (IHl A n i). destruct s as (x & x0 & e2 & e3 & e1 & e0).
subst. exists (Box a :: x). exists x0. repeat split.
rewrite effective_remove_nth in e1. rewrite effective_remove_nth in e0.
assert (fst (Box a :: fst (nth_split (S (length x)) (x ++ x0)), snd (nth_split (S (length x)) (x ++ x0))) =
Box a :: fst (nth_split (S (length x)) (x ++ x0))). simpl. reflexivity.
assert (S (S (length x)) = S (length (Box a :: x))). simpl. reflexivity.
rewrite H0. assert ((Box a :: x ++ A :: x0) = ((Box a :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H1. clear H0. clear H1. rewrite effective_remove_nth.
pose (nth_split_idL (Box a :: x) x0). simpl (length (Box a :: x)) in e2.
rewrite <- e2. reflexivity.
rewrite effective_remove_nth in e0. rewrite effective_remove_nth in e1.
assert (S (S (length x)) = S (length (Box a :: x))). simpl. reflexivity.
rewrite H. assert ((Box a :: x ++ A :: x0) = ((Box a :: x) ++ A :: x0)). simpl. reflexivity.
rewrite H0. clear H. clear H0. rewrite effective_remove_nth.
pose (nth_split_idR (Box a :: x) x0). simpl (length (Box a :: x)) in e2.
rewrite <- e2. reflexivity.
Defined.
Lemma In_l_imp_In_pos_top_imps : forall l (A B : MPropF), In (Imp A B) l ->
existsT2 n, In ((Imp A B), n) (pos_top_imps l).
Proof.
induction l.
- intros. simpl in H. destruct H.
- intros. apply In_InT in H. inversion H.
* subst. exists 1. simpl. left. reflexivity.
* destruct a.
+ subst. apply InT_In in H1. apply IHl in H1. destruct H1. exists (S x). simpl.
apply InT_In. apply InT_map_iff. exists (A --> B, x). simpl. split ; auto.
apply In_InT_pair. assumption.
+ subst. apply InT_In in H1. apply IHl in H1. destruct H1. exists (S x). simpl.
apply InT_In. apply InT_map_iff. exists (A --> B, x). simpl. split ; auto.
apply In_InT_pair. assumption.
+ subst. apply InT_In in H1. apply IHl in H1. destruct H1. exists (S x). simpl.
right. apply InT_In. apply InT_map_iff. exists (A --> B, x). simpl. split ; auto.
apply In_InT_pair. assumption.
+ subst. apply InT_In in H1. apply IHl in H1. destruct H1. exists (S x). simpl.
apply InT_In. apply InT_map_iff. exists (A --> B, x). simpl. split ; auto.
apply In_InT_pair. assumption.
Qed.
Lemma Good_pos_in_pos_top_imps : forall A B Δ0 Δ1,
In (A --> B, S (length Δ0)) (pos_top_imps (Δ0 ++ A --> B :: Δ1)).
Proof.
induction Δ0.
- intros. simpl. auto.
- intros. destruct a.
* simpl. apply InT_In. apply InT_map_iff. exists (A --> B, S (length Δ0)).
split. simpl. reflexivity. apply In_InT_pair. apply IHΔ0.
* simpl. apply InT_In. apply InT_map_iff. exists (A --> B, S (length Δ0)).
split. simpl. reflexivity. apply In_InT_pair. apply IHΔ0.
* simpl. right. apply InT_In. apply InT_map_iff. exists (A --> B, S (length Δ0)).
split. simpl. reflexivity. apply In_InT_pair. apply IHΔ0.
* simpl. apply InT_In. apply InT_map_iff. exists (A --> B, S (length Δ0)).
split. simpl. reflexivity. apply In_InT_pair. apply IHΔ0.
Qed.
(* From there we can show that given a specific (Imp A B) on the right of a sequent S,
there is only finitely many premises via ImpR applied on this implication. But we
need to do it for all implications on the right of this sequent. *)
Definition ImpR_help01 : forall prem s l, InT prem (prems_Imp_R l s) ->
(existsT2 n A B Γ0 Γ1 Δ0 Δ1,
(In ((Imp A B), S n) l) /\
(prem = (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1)) /\
(Γ0 ++ Γ1 = fst s) /\
(Δ0 = (fst (nth_split n (remove_nth (S n) (Imp A B) (snd s))))) /\
(Δ1 = (snd (nth_split n (remove_nth (S n) (Imp A B) (snd s)))))).
Proof.
intros prem s. destruct s. destruct prem. induction l3 ; intros X.
- simpl in X. inversion X.
- destruct a as [m n]. destruct m as [m | | | ].
* simpl in X. destruct n.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p).
decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try auto. apply in_cons. tauto.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
* simpl in X. destruct n.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
* destruct n.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
+ apply InT_app_or in X. destruct X.
{ simpl (fst (l, l0)) in i. simpl (snd (l, l0)) in i.
unfold listInsertsR_Seqs in i. apply InT_map_iff in i. destruct i.
destruct p. subst. unfold listInserts in i. apply InT_map_iff in i. destruct i.
destruct p. destruct x0. subst. destruct (list_of_splits l). simpl in i. exists n.
exists m1. exists m2. exists l4. exists l5. simpl (snd (l, l0)).
simpl (fst (l, l0)).
exists (fst (nth_split n (remove_nth (S n) (m1 --> m2) l0))).
exists (snd (nth_split n (remove_nth (S n) (m1 --> m2) l0))).
repeat split ; try auto. apply in_eq. rewrite i0. apply InT_In. assumption. }
{ pose (IHl3 i). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto. }
* simpl in X. destruct n.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
+ pose (IHl3 X). destruct s as (x & x0 & x1 & x2 & x3 & x4 & x5 & p). decompose record p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. repeat split ; try tauto. apply in_cons. tauto.
Defined.
Definition ImpR_help1 : forall prem s, InT prem (prems_Imp_R (pos_top_imps (snd s)) s) -> ImpRRule [prem] s.
Proof.
intros prem s X. pose (ImpR_help01 _ _ X). destruct s0. destruct s.
destruct s0. destruct s as (B & Γ0 & Γ1 & Δ0 & Δ1 & i & e2 & e3 & e4 & e5).
subst. simpl in i, e3. subst.
simpl (snd (_, _)) in *.
apply In_pos_top_imps_split_l in i. destruct i. destruct s as (x2 & H1 & H2 & H3 & H4).
subst.
rewrite <- H4. rewrite effective_remove_nth. rewrite <- nth_split_idL.
apply ImpRRule_I.
Defined.
Definition ImpR_help002 : forall Γ0 Γ1 Δ0 Δ1 A B,
InT (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1) (listInsertsR_Seqs (Γ0 ++ Γ1) (Δ0 ++ B :: Δ1) A).
Proof.
intros. unfold listInsertsR_Seqs. apply InT_map_iff. exists (Γ0 ++ A :: Γ1). split.
reflexivity. unfold listInserts. apply InT_map_iff. exists (Γ0, Γ1). simpl. split.
reflexivity. destruct (list_of_splits (Γ0 ++ Γ1)). simpl. pose (i Γ0 Γ1).
apply In_InT_seqs. apply i0. reflexivity.
Defined.
Definition ImpR_help02 : forall Γ0 Γ1 Δ0 Δ1 A B l n,
ImpRRule [(Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1)] (Γ0 ++ Γ1, Δ0 ++ (Imp A B) :: Δ1) ->
(length Δ0 = n) ->
(In ((Imp A B), S n) l) ->
InT (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1) (prems_Imp_R l (Γ0 ++ Γ1, Δ0 ++ (Imp A B) :: Δ1)).
Proof.
induction l ; intros.
- inversion H1.
- destruct a. destruct m.
* apply In_InT_pair in H1. inversion H1. subst. inversion H3. subst. apply InT_In in H3.
assert (J1: length Δ0 = length Δ0). reflexivity.
pose (IHl _ H J1 H3). simpl. destruct n0. assumption. assumption.
* apply In_InT_pair in H1. inversion H1. subst. inversion H3. subst. apply InT_In in H3.
assert (J1: length Δ0 = length Δ0). reflexivity.
pose (IHl _ H J1 H3). simpl. destruct n0. assumption. assumption.
* apply In_InT_pair in H1. inversion H1.
+ subst. inversion H3. subst. destruct Δ0.
{ simpl. pose (ImpR_help002 Γ0 Γ1 [] Δ1 A B). simpl in i. destruct (eq_dec_form (A --> B) (A --> B)).
apply InT_or_app. auto. exfalso. auto. }
{ unfold prems_Imp_R. apply InT_or_app. left.
assert ((remove_nth (S (length (m :: Δ0))) (A --> B) (snd (Γ0 ++ Γ1, (m :: Δ0) ++ A --> B :: Δ1))) =
(m :: Δ0) ++ Δ1). simpl (snd (Γ0 ++ Γ1, (m :: Δ0) ++ A --> B :: Δ1)).
pose (effective_remove_nth (A --> B) (m :: Δ0) Δ1). assumption.
rewrite H0.
assert (fst (nth_split (length (m :: Δ0)) ((m :: Δ0) ++ Δ1)) = (m :: Δ0) /\
snd (nth_split (length (m :: Δ0)) ((m :: Δ0) ++ Δ1)) = Δ1). apply nth_split_length_id.
reflexivity. destruct H2. rewrite H2. rewrite H4. apply ImpR_help002. }
+ subst. assert (J1: (length Δ0) = (length Δ0)). reflexivity. apply InT_In in H3.
pose (IHl (length Δ0) H J1 H3). simpl. destruct n0. assumption. apply InT_or_app. auto.
* apply In_InT_pair in H1. inversion H1. subst. inversion H3. subst. apply InT_In in H3.
assert (J1: length Δ0 = length Δ0). reflexivity.
pose (IHl _ H J1 H3). simpl. destruct n0. assumption. assumption.
Defined.
Definition ImpR_help2 : forall prem s, ImpRRule [prem] s -> InT prem (prems_Imp_R (pos_top_imps (snd s)) s).
Proof.
intros. inversion H. subst. simpl.
pose (@ImpR_help02 Γ0 Γ1 Δ0 Δ1 A B (pos_top_imps (Δ0 ++ A --> B :: Δ1)) (length Δ0)). apply i ; try assumption.
reflexivity. apply Good_pos_in_pos_top_imps.
Defined.
Definition finite_ImpR_premises_of_S : forall (s : Seq), existsT2 listImpRprems,
(forall prems, ((ImpRRule prems s) -> (InT prems listImpRprems)) *
((InT prems listImpRprems) -> (ImpRRule prems s))).
Proof.
intro s. destruct s.
exists (map (fun y => [y]) (prems_Imp_R (pos_top_imps l0) (l,l0))).
intros. split ; intro.
- inversion H. subst. apply InT_map_iff.
exists (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1). split. reflexivity.
pose (@ImpR_help2 (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1) (Γ0 ++ Γ1, Δ0 ++ A --> B :: Δ1)). simpl in i. apply i.
assumption.
- apply InT_map_iff in H. destruct H. destruct p. subst. apply ImpR_help1. simpl. assumption.
Defined.
(* Then, we turn to the case of the ImpL rule. *)
Fixpoint prems_Imp_L (l : list ((MPropF) * nat)) (s : Seq) : list (list Seq) :=
match l with
| nil => nil
| (C, n) :: t => match n with
| 0 => prems_Imp_L t s
| S m => match C with
| Imp A B => flatten_list
(map (fun y => map (fun z => [z; y])
(listInsertsL_Seqs ((fst (nth_split m (remove_nth (S m) C (fst s)))) ++
(snd (nth_split m (remove_nth (S m) C (fst s))))) (snd s) A))
[(((fst (nth_split m (remove_nth (S m) C (fst s)))) ++
B :: (snd (nth_split m (remove_nth (S m) C (fst s))))), (snd s))])
++ (prems_Imp_L t s)
| _ => prems_Imp_L t s
end
end
end.
Definition ImpL_help002 : forall Γ0 Γ1 Δ0 Δ1 A B,
InT [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]
(flatten_list (map (fun y : list MPropF * list MPropF => map
(fun z : list MPropF * list MPropF => [y; z]) [(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)])
(listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A)))
.
Proof.
intros.
pose (@InT_trans_flatten_list _ (map (fun y : list MPropF * list MPropF => map
(fun z : list MPropF * list MPropF => [y; z]) [(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)])
(listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A))
(map (fun z : list MPropF * list MPropF => [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); z])
[(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]) [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]).
apply i ; clear i.
- pose (InT_map_iff (fun z : list MPropF * list MPropF => [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); z]) [(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]
[(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]).
destruct p. clear s. apply i. exists (Γ0 ++ B :: Γ1, Δ0 ++ Δ1). split. reflexivity. apply InT_eq.
- pose (InT_map_iff (fun y : list MPropF * list MPropF =>
map (fun z : list MPropF * list MPropF => [y; z]) [(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)])
(listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A) (map (fun z : list MPropF * list MPropF => [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); z])
[(Γ0 ++ B :: Γ1, Δ0 ++ Δ1)])).
destruct p. apply i. clear i. clear s. exists (Γ0 ++ Γ1, Δ0 ++ A :: Δ1). split. reflexivity.
unfold listInsertsL_Seqs.
pose (InT_map_iff (fun y : list MPropF => (Γ0 ++ Γ1, y)) (listInserts (Δ0 ++ Δ1) A) (Γ0 ++ Γ1, Δ0 ++ A :: Δ1)).
destruct p. apply i. clear s. clear i. exists (Δ0 ++ A :: Δ1). split. reflexivity.
unfold listInserts.
pose (InT_map_iff (fun y : list MPropF * list MPropF => fst y ++ A :: snd y)
(proj1_sigT2 (list_of_splits (Δ0 ++ Δ1))) (Δ0 ++ A :: Δ1)). destruct p. clear s.
apply i. clear i. exists (Δ0,Δ1). simpl. split. reflexivity. destruct (list_of_splits (Δ0 ++ Δ1)).
simpl. pose (i Δ0 Δ1). apply In_InT_seqs. rewrite <- i0. reflexivity.
Defined.
Definition ImpL_help02 : forall Γ0 Γ1 Δ0 Δ1 A B l n,
ImpLRule [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)] (Γ0 ++ (Imp A B) :: Γ1, Δ0 ++ Δ1) ->
(length Γ0 = n) ->
(In ((Imp A B), S n) l) ->
InT [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)] (prems_Imp_L l (Γ0 ++ (Imp A B) :: Γ1, Δ0 ++ Δ1)).
Proof.
induction l ; intros.
- inversion H1.
- destruct a. destruct m.
* subst. apply In_InT_pair in H1. inversion H1. subst. inversion H2. subst. apply InT_In in H2.
assert (J1: length Γ0 = length Γ0). reflexivity.
pose (IHl _ H J1 H2). simpl. destruct n0. assumption. assumption.
* subst. apply In_InT_pair in H1. inversion H1. subst. inversion H2. subst. apply InT_In in H2.
assert (J1: length Γ0 = length Γ0). reflexivity.
pose (IHl _ H J1 H2). simpl. destruct n0. assumption. assumption.
* apply In_InT_pair in H1. inversion H1.
+ subst. inversion H3. subst.
pose (ImpL_help002 Γ0 Γ1 Δ0 Δ1 A B). simpl in i.
apply InT_or_app. left.
apply InT_trans_flatten_list with (bs:=(flatten_list
(map (fun y : list MPropF * list MPropF => [[y; (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]])
(listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A)))). assumption. apply InT_map_iff.
exists (Γ0 ++ B :: Γ1, Δ0 ++ Δ1). split.
destruct (eq_dec_form (A --> B) (A --> B)).
apply InT_flatten_list_InT_elem in i. destruct i. destruct p.
assert ((listInsertsL_Seqs (fst
(nth_split (length Γ0) (remove_nth (S (length Γ0)) (A --> B) (fst (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)))) ++
snd
(nth_split (length Γ0) (remove_nth (S (length Γ0)) (A --> B) (fst (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)))))
(snd (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)) A) = (listInsertsL_Seqs (Γ0 ++ Γ1) (Δ0 ++ Δ1) A)).
simpl (snd (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)).
simpl (fst (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)). repeat rewrite effective_remove_nth.
assert (length Γ0 = length Γ0). reflexivity.
pose (@nth_split_length_id Γ0 Γ1 (length Γ0) H0). destruct a. rewrite H2. rewrite H4.
reflexivity. rewrite H0.
apply redundant_flatten_list. exfalso. auto.
destruct (eq_dec_form (A --> B) (A --> B)). simpl (snd (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)).
simpl (fst (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)). repeat rewrite effective_remove_nth.
assert (length Γ0 = length Γ0). reflexivity.
pose (@nth_split_length_id Γ0 Γ1 (length Γ0) H0). destruct a. rewrite H2. rewrite H4.
apply InT_eq. exfalso. auto.
+ subst. assert (J1: (length Γ0) = (length Γ0)). reflexivity. apply InT_In in H3.
pose (IHl (length Γ0) H J1 H3). simpl. destruct n0. assumption. apply InT_or_app. auto.
* subst. apply In_InT_pair in H1. inversion H1. subst. inversion H2. subst. apply InT_In in H2.
assert (J1: length Γ0 = length Γ0). reflexivity.
pose (IHl _ H J1 H2). simpl. destruct n0. assumption. assumption.
Defined.
Definition ImpL_help2 : forall prem1 prem2 s, ImpLRule [prem1; prem2] s ->
InT [prem1; prem2] (prems_Imp_L (pos_top_imps (fst s)) s).
Proof.
intros. inversion H. subst. simpl.
pose (@ImpL_help02 Γ0 Γ1 Δ0 Δ1 A B (pos_top_imps (Γ0 ++ (Imp A B) :: Γ1)) (length Γ0)). apply i ; try assumption.
reflexivity. apply Good_pos_in_pos_top_imps.
Defined.
Definition ImpL_help01 : forall prems s l, InT prems (prems_Imp_L l s) ->
(existsT2 n prem1 prem2 A B Γ0 Γ1 Δ0 Δ1,
(prems = [prem1; prem2]) /\
(In ((Imp A B), S n) l) /\
(prem1 = (Γ0 ++ Γ1, Δ0 ++ A :: Δ1)) /\
(prem2 = (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)) /\
(Δ0 ++ Δ1 = snd s) /\
(Γ0 = (fst (nth_split n (remove_nth (S n) (Imp A B) (fst s))))) /\
(Γ1 = (snd (nth_split n (remove_nth (S n) (Imp A B) (fst s)))))).
Proof.
intros prems s. destruct s. induction l1 ; intros X.
- simpl in X. inversion X.
- simpl (fst (l, l0)). destruct a as [m n]. destruct m as [n0 | | | ].
* simpl in X. destruct n.
+ pose (s := IHl1 X). repeat destruct s. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
+ pose (s := IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
* simpl in X. destruct n.
+ pose (s := IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
+ pose (s := IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
* destruct n.
+ pose (s := IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
+ apply InT_app_or in X. destruct X.
{ simpl (fst (l, l0)) in i. simpl (snd (l, l0)) in i.
apply InT_flatten_list_InT_elem in i. destruct i. destruct p.
apply InT_map_iff in i0. destruct i0. destruct p.
inversion i0. subst. apply InT_map_iff in i. destruct i.
destruct p. unfold listInsertsL_Seqs in i. apply InT_map_iff in i.
destruct i. destruct p. subst. unfold listInserts in i. apply InT_map_iff in i. destruct i.
destruct p. destruct x. subst. destruct (list_of_splits l0). simpl in i. exists n.
simpl (fst (l2, l3)). simpl (snd (l2, l3)).
exists (fst (nth_split n (remove_nth (S n) (m1 --> m2) l)) ++
snd (nth_split n (remove_nth (S n) (m1 --> m2) l)), l2 ++ m1 :: l3).
exists (fst
(nth_split n
match n with
| 0 =>
match l with
| [] => []
| B0 :: tl => if eq_dec_form (m1 --> m2) B0 then tl else B0 :: tl
end
| S _ => match l with
| [] => []
| B0 :: tl => B0 :: remove_nth n (m1 --> m2) tl
end
end) ++
m2
:: snd
(nth_split n
match n with
| 0 =>
match l with
| [] => []
| B0 :: tl => if eq_dec_form (m1 --> m2) B0 then tl else B0 :: tl
end
| S _ => match l with
| [] => []
| B0 :: tl => B0 :: remove_nth n (m1 --> m2) tl
end
end), l0).
exists m1. exists m2. exists (fst (nth_split n (remove_nth (S n) (m1 --> m2) l))).
exists (snd (nth_split n (remove_nth (S n) (m1 --> m2) l))).
exists l2. exists l3. simpl (snd (l, l0)). simpl (fst (l, l0)).
repeat split ; try auto. apply in_eq. simpl. assert (l2 ++ l3 = l0). rewrite i1. apply InT_In.
assumption. rewrite <- H. reflexivity. rewrite i1. apply InT_In. assumption. subst. inversion H0. }
{ pose (IHl1 i). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto. }
* simpl in X. destruct n.
+ pose (IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
+ pose (IHl1 X). repeat destruct s. repeat destruct p. exists x. exists x0. exists x1.
exists x2. exists x3. exists x4. exists x5. exists x6. exists x7.
repeat split ; try tauto. apply in_cons. tauto.
Defined.
Definition ImpL_help1 : forall prems s, InT prems (prems_Imp_L (pos_top_imps (fst s)) s) ->
ImpLRule prems s.
Proof.
intros prem s X. pose (s0 := @ImpL_help01 _ _ _ X). destruct s0 as (n&Hn&A&B&Γ0&Γ1&Δ0& Δ1&e1&Heq&i&p). destruct s as (l&l0). simpl in X.
intuition. subst.
apply In_pos_top_imps_split_l in i.
simpl (fst (l, l0)). simpl in H0. subst.
simpl (fst (l, Δ1 ++ e1)) in X.
destruct i as (l0&l1&Heq1&Heq3&Heq2&Heq4).
subst.
simpl (fst (l, Δ1 ++ e1)) in Heq1.
simpl (fst (l, Δ1 ++ e1)) in Heq2.
remember (fst (nth_split (length l0) (remove_nth (S (length l0)) (B --> Γ0) l))) as Γ0'.
remember (snd (nth_split (length l0) (remove_nth (S (length l0)) (B --> Γ0) l))) as Γ1'.
rewrite Heq1, Heq2.
apply ImpLRule_I.
Defined.
Definition finite_ImpL_premises_of_S : forall (s : Seq), existsT2 listImpLprems,
(forall prems, ((ImpLRule prems s) -> (InT prems listImpLprems)) *
((InT prems listImpLprems) -> (ImpLRule prems s))).
Proof.
intros. destruct s.
exists (prems_Imp_L (pos_top_imps l) (l,l0)).
intros. split ; intro.
- inversion H. subst.
pose (@ImpL_help2 (Γ0 ++ Γ1, Δ0 ++ A :: Δ1) (Γ0 ++ B :: Γ1, Δ0 ++ Δ1) (Γ0 ++ A --> B :: Γ1, Δ0 ++ Δ1)). apply i.
assumption.
- pose (@ImpL_help1 prems (l, l0)). apply i. assumption.
Defined.
(* Now let us tackle the GLR rule. *)
Fixpoint prems_Box_R (l : list MPropF) (s : Seq) : list (list Seq) :=
match l with
| nil => nil
| h :: t => match h with
| Box A => [((XBoxed_list (top_boxes (fst s))) ++ [Box A], [A])] :: (prems_Box_R t s)
| _ => prems_Box_R t s
end
end.
Definition GLR_help01 : forall prems s (l : list MPropF), InT prems (prems_Box_R l s) ->
(existsT2 (A : MPropF),
(In (Box A) l) /\
(prems = [(XBoxed_list (top_boxes (fst s)) ++ [Box A], [A])])).
Proof.
intros prems s. destruct s. induction l1 ; intros X.
- simpl in X. inversion X.
- simpl in X. destruct a.
* apply IHl1 in X. destruct X as (x & i & p). subst.
exists x. repeat split ; try auto ; try apply in_cons ; try assumption.
* apply IHl1 in X. destruct X as (x & i & p). subst.
exists x. repeat split ; try auto ; try apply in_cons ; try assumption.
* apply IHl1 in X. destruct X as (x & i & p). subst.
exists x. repeat split ; try auto ; try apply in_cons ; try assumption.
* inversion X.
+ subst. eexists a. repeat split ; try auto ; try apply in_eq.
+ apply IHl1 in H0. decompose record H0. subst.
exists x. repeat split ; try auto ; try apply in_cons ; try assumption.
Defined.
Definition GLR_help1 : forall prems s, InT prems (prems_Box_R (top_boxes (snd s)) s) ->
GLRRule prems s.
Proof.
intros prems s X. destruct (@GLR_help01 _ _ _ X) as (x&i&Heq). destruct s. simpl in X.
subst. simpl in i. assert (In (Box x) l0). apply top_boxes_incl_list.
assumption. apply in_splitT in H. destruct H. repeat destruct s.
rewrite e. apply GLRRule_I. intro. intros. apply in_top_boxes in H.
destruct H. repeat destruct s. repeat destruct p. exists x2. assumption.
simpl. apply top_boxes_nobox_gen_ext.
Defined.
Definition GLR_help02 : forall Γ Δ0 Δ1 BΓ A l, GLRRule [(XBoxed_list BΓ ++ [Box A], [A])] (Γ, Δ0 ++ Box A :: Δ1) ->
(is_Boxed_list BΓ) ->
(nobox_gen_ext BΓ Γ) ->
(In (Box A) l) ->
InT [(XBoxed_list BΓ ++ [Box A], [A])] (prems_Box_R l (Γ, Δ0 ++ Box A :: Δ1)).
Proof.
induction l ; intros.
- inversion H0.
- simpl. destruct a as [n | | | ].
* assert (InT (Box A) (# n :: l)). apply in_splitT in H0. destruct H0. destruct s. rewrite e.
apply InT_or_app. right. apply InT_eq. inversion H1. inversion H3. apply InT_In in H3.
pose (IHl X H X0 H3). assumption.
* assert (InT (Box A) (⊥ :: l)). apply in_splitT in H0. destruct H0. destruct s. rewrite e.
apply InT_or_app. right. apply InT_eq. inversion H1. inversion H3. apply InT_In in H3.
pose (IHl X H X0 H3). assumption.
* assert (InT (Box A) (a1 --> a2 :: l)). apply in_splitT in H0. destruct H0. destruct s. rewrite e.
apply InT_or_app. right. apply InT_eq. inversion H1. inversion H3. apply InT_In in H3.
pose (IHl X H X0 H3). assumption.
* assert (InT (Box A) (Box a :: l)). apply in_splitT in H0. destruct H0. destruct s. rewrite e.
apply InT_or_app. right. apply InT_eq. inversion H1.
+ subst. inversion H3. subst. pose (nobox_gen_ext_top_boxes_identity X0 H). rewrite e.
apply InT_eq.
+ subst. apply InT_In in H3. pose (IHl X H X0 H3). apply InT_cons. assumption.
Defined.
Definition GLR_help2 : forall prem s, GLRRule [prem] s ->
InT [prem] (prems_Box_R (top_boxes (snd s)) s).
Proof.
intros. inversion X. subst. simpl.
pose (@GLR_help02 Γ0 Δ0 Δ1 BΓ A (top_boxes (Δ0 ++ Box A :: Δ1))). apply i ; try assumption.
rewrite top_boxes_distr_app. simpl. apply in_or_app. right. apply in_eq.
Defined.
Definition finite_GLR_premises_of_S : forall (s : Seq), existsT2 listGLRprems,
(forall prems, ((GLRRule prems s) -> (InT prems listGLRprems)) *
((InT prems listGLRprems) -> (GLRRule prems s))).
Proof.
intros. destruct s.
exists (prems_Box_R (top_boxes l0) (l,l0)).
intros. split ; intro.
- inversion X. subst.
pose (@GLR_help2 (XBoxed_list BΓ ++ [Box A], [A]) (l, Δ0 ++ Box A :: Δ1)). apply i.
assumption.
- pose (@GLR_help1 prems (l, l0)). apply g. assumption.
Defined.
(* Obviously, we can obtain the same result for the initial sequents. *)
Definition finite_IdP_premises_of_S : forall (s : Seq), existsT2 listIdPprems,
(forall prems, ((IdPRule prems s) -> (InT prems listIdPprems)) *
((InT prems listIdPprems) -> (IdPRule prems s))).
Proof.
intros s. destruct (dec_IdP_rule s).
- exists [[]]. intros. split ; intro.
* inversion H. subst. apply InT_eq.
* inversion H. subst. assumption. inversion H1.
- exists []. intros. split ; intro.
* inversion H. subst. exfalso. apply f. assumption.
* inversion H.
Defined.
Definition finite_IdB_premises_of_S : forall (s : Seq), existsT2 listIdBprems,
(forall prems, ((IdBRule prems s) -> (InT prems listIdBprems)) *
((InT prems listIdBprems) -> (IdBRule prems s))).
Proof.
intros s. destruct (dec_IdB_rule s).
- exists [[]]. intros. split ; intro.
* inversion H. subst. apply InT_eq.
* inversion H. subst. assumption. inversion H1.
- exists []. intros. split ; intro.
* inversion H. subst. exfalso. apply f. assumption.
* inversion H.
Defined.
Definition finite_BotL_premises_of_S : forall (s : Seq), existsT2 listBotLprems,
(forall prems, ((BotLRule prems s) -> (InT prems listBotLprems)) *
((InT prems listBotLprems) -> (BotLRule prems s))).
Proof.
intros. destruct (dec_BotL_rule s).
- exists [[]]. intros. split ; intro.
* inversion H. subst. apply InT_eq.
* inversion H. subst. assumption. inversion H1.
- exists []. intros. split ; intro.
* inversion H. subst. exfalso. apply f. assumption.
* inversion H.
Defined.
(* Now that we have the list of all premises of a sequent via all rules, we can combine
them all to obtain the list of all potential premises via the GLS calculus. *)
Definition finite_premises_of_S : forall (s : Seq), existsT2 listprems,
(forall prems, ((GLS_rules prems s) -> (InT prems listprems)) *
((InT prems listprems) -> (GLS_rules prems s))).
Proof.
intro s.
destruct (dec_GLS_rules s).
- exists []. intros. split. intro. exfalso. apply f. exists prems. assumption.
intro. inversion H.
- pose (finite_IdP_premises_of_S s). destruct s1.
pose (finite_BotL_premises_of_S s). destruct s1.
pose (finite_ImpR_premises_of_S s). destruct s1.
pose (finite_ImpL_premises_of_S s). destruct s1.
pose (finite_GLR_premises_of_S s). destruct s1.
exists (x ++ x0 ++ x1 ++ x2 ++ x3).
split.
* intro RA. inversion RA.
{ inversion H. subst. pose (p []). destruct p4. apply InT_or_app. auto. }
{ inversion H. subst. pose (p0 []). destruct p4. apply InT_or_app. right. apply InT_or_app. auto. }
{ inversion H. subst. pose (p1 [(Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1)]). destruct p4.
apply InT_or_app. right. apply InT_or_app. right. apply InT_or_app. auto. }
{ inversion H. subst. pose (p2 [(Γ0 ++ Γ1, Δ0 ++ A :: Δ1); (Γ0 ++ B :: Γ1, Δ0 ++ Δ1)]).
destruct p4. apply InT_or_app. right. apply InT_or_app. right.
apply InT_or_app. right. apply InT_or_app. auto. }
{ inversion X. subst. pose (p3 [(XBoxed_list BΓ ++ [Box A], [A])]).
destruct p4. apply InT_or_app. right. apply InT_or_app.
right. apply InT_or_app. right. apply InT_or_app. right. auto. }
* intro. apply InT_app_or in H. destruct H.
{ apply p in i. apply IdP ; try intro ; try apply f ; try auto ; try assumption. }
{ apply InT_app_or in i. destruct i.
- apply p0 in i. apply BotL ; try intro ; try apply f ; try auto ; try assumption.
- apply InT_app_or in i. destruct i.
+ apply p1 in i. apply ImpR ; try intro ; try apply f ; try auto ; try assumption.
+ apply InT_app_or in i. destruct i.
* apply p2 in i. apply ImpL ; try intro ; try apply f ; try auto ; try assumption.
* apply p3 in i. apply GLR ; try intro ; try apply f ; try auto ; try assumption. }
Defined.
(* The next definitions "flattens" a list of lists of premises to a list of premises.*)
Definition list_of_premises (s : Seq) : list Seq :=
flatten_list (proj1_sigT2 (finite_premises_of_S s)).
Lemma InT_list_of_premises_exists_prems : forall s prem, InT prem (list_of_premises s) ->
existsT2 prems, (InT prem prems) * (GLS_rules prems s).
Proof.
intros s prem X. unfold list_of_premises in X.
apply InT_flatten_list_InT_elem in X. destruct X. destruct p.
exists x. split. auto.
destruct (finite_premises_of_S s). pose (p x). destruct p0. apply g. assumption.
Qed.
Lemma exists_prems_InT_list_of_premises : forall s prem,
(existsT2 prems, (InT prem prems) * (GLS_rules prems s)) ->
InT prem (list_of_premises s).
Proof.
intros. destruct X. destruct p. unfold list_of_premises. destruct (finite_premises_of_S s).
pose (p x). destruct p0. apply InT_trans_flatten_list with (bs:=x). assumption. simpl. apply i0.
assumption.
Qed.
(* Decidability *)
Lemma derrec_composition: forall X (rules : list X -> X -> Type) (prems0 prems1 : X -> Prop) (concl : X),
(forall leaf : X, prems0 leaf -> (derrec rules prems1 leaf)) ->
(derrec rules prems0 concl) ->
(derrec rules prems1 concl).
Proof.
intros X rules prems0 prems1 concl HypLeaves der. apply derrec_all_rect with
(Q:= fun x => (derrec rules prems1 x))
in der.
- exact der.
- intros. apply HypLeaves. assumption.
- intros ps concl0 RA ders IH. apply dersrec_all in IH. apply derI with (ps:=ps) ; assumption.
Qed.
Theorem derrec_leaves_thms : forall (s0 s1 : rel (list MPropF)),
(derrec GLS_rules (fun x => (x = s0)) s1) ->
(derrec GLS_rules (fun _ => False) s0) ->
(derrec GLS_rules (fun _ => False) s1).
Proof.
intros s0 s1 leaves pfs.
pose (@derrec_composition (rel (list MPropF)) GLS_rules (fun x => (x = s0)) (fun _ => False)
s1). apply d.
- intros. inversion H. assumption.
- assumption.
Qed.
Theorem GLS_dec_der : forall s,
(derrec GLS_rules (fun _ => False) s) + ((derrec GLS_rules (fun _ => False) s) -> False).
Proof.
apply less_thanS_strong_inductionT.
intros s IH. pose (finite_premises_of_S s). destruct s0.
destruct (dec_init_rules s).
- left. destruct s0. destruct s0. 1,3: apply derI with (ps:=[]) ; auto.
2,4: apply dlNil. apply IdP ; auto. apply BotL ; auto.
inversion i ; subst. apply Id_all_form.
- assert (forall prems, (InT prems x) -> ((dersrec GLS_rules (fun _ => False) prems) +
((dersrec GLS_rules (fun _ => False) prems) -> False))).
{ intros. pose (p prems). destruct p0. apply g in H. inversion H.
- inversion H0. subst. left ; apply dlNil.
- inversion H0. subst. left ; apply dlNil.
- inversion H0. subst.
assert (J1: (Γ0 ++ A :: Γ1, Δ0 ++ B :: Δ1) << (Γ0 ++ Γ1, Δ0 ++ A --> B :: Δ1)).
apply ImpR_applic_reduces_measure ; auto. destruct (IH _ J1).
* left ; apply dlCons ; auto ; apply dlNil.
* right. intro. inversion X. subst. auto.
- inversion H0. subst.
destruct (ImpL_applic_reduces_measure H0). destruct (IH _ l) ; destruct (IH _ l0).
* left. apply dlCons ; auto ; apply dlCons ; auto ; apply dlNil.
* right. intro. inversion X. subst. inversion X1. subst. auto.
* right. intro. inversion X. subst. auto.
* right. intro. inversion X. subst. auto.
- inversion X. subst.
assert (J1: (XBoxed_list BΓ ++ [Box A], [A]) << (Γ0, Δ0 ++ Box A :: Δ1)).
apply (GLR_applic_reduces_measure X) ; auto. destruct (IH _ J1).
* left. apply dlCons ; auto ; apply dlNil.
* right. intro. inversion X1. subst. auto. }
assert ((existsT2 prems, (InT prems x) * (dersrec GLS_rules (fun _ => False) prems)) +
(forall prems, (InT prems x) -> ((dersrec GLS_rules (fun _ => False) prems) -> False))).
{ assert ((existsT2 prems, (InT prems x) * (dersrec GLS_rules (fun _ => False) prems)) +
((existsT2 prems, (InT prems x) * (dersrec GLS_rules (fun _ => False) prems)) -> False)).
{ pose (@forall_elem_list _ x (fun y =>
dersrec GLS_rules (fun _ : rel (list MPropF) => False) y) X). destruct s0.
- left. auto.
- right. auto. }
destruct X0.
- destruct s0. destruct p0. left. exists x0. auto.
- right. intros. firstorder. }
destruct X0.
++ destruct s0. destruct p0. pose (p x0). destruct p0. apply g in i. left. apply derI with (ps:=x0) ; assumption.
++ pose (dec_init_rules s). repeat destruct s0.
* left. apply derI with (ps:=[]) ; [apply IdP ; assumption | apply dlNil].
* left. inversion i ; subst. apply Id_all_form.
* left. apply derI with (ps:=[]) ; [apply BotL ; assumption | apply dlNil].
* right. intro der. inversion der.
+ inversion H.
+ subst. inversion X0.
{ inversion H. subst. apply f. auto. }
{ inversion H. subst. apply f. auto. }
{ subst. pose (f0 ps). apply f2. pose (p ps). destruct p0. apply i. assumption.
assumption. }
{ subst. pose (f0 ps). apply f2. pose (p ps). destruct p0. apply i. assumption.
assumption. }
{ subst. pose (f0 ps). apply f2. pose (p ps). destruct p0. apply i. assumption.
assumption. }
Qed.