GL.Interpolation.UIGL_irred_short

(**************************************************************)
(*   Copyright Dominique Larchey-Wendling *                 *)
(*                                                            *)
(*                             * Affiliation LORIA -- CNRS  *)
(**************************************************************)
(*      This file is distributed under the terms of the       *)
(*         CeCILL v2.1 FREE SOFTWARE LICENSE AGREEMENT        *)
(**************************************************************)

Certification of
let rec flatmap f = function | -> | x::l -> f x ++ flatmap f l
let rec irred f x = match f x with | -> x | _ -> flatmap (irred f) (f x)
by extraction.
Following a question by Ian Schillito Also look at the following PR
https://github.com/DmxLarchey/Kruskal-Trees/pull/5

(* 
   This is a standalone file, directly compile with

      coqc irred.v 
 *)


Require Import List Utf8 Extraction.
Import ListNotations.

#[local] Infix "∈" := (@In _) (at level 70, no associativity).
#[local] Hint Resolve in_eq in_cons : core.

Definition list_is_nil {X} (l : list X) : { l = [] } + { l [] }.
Proof. now destruct l; [ left | right ]. Defined.

Directly via Fix_F after cleaning up from Braga using the domain Dirred := Acc (λ u v, u ∈ f v) directly
Section flatmap.

  Variables (X : Type)
            (F : X list X Prop)
            (D : X Prop)
            (f : x, D x sig (F x)).

  Implicit Type (l : list X).

  Inductive Gflatmap : list X list X Prop :=
    | Gfm_nil : Gflatmap [] []
    | Gfm_cons {x y l m} : F x y
                          Gflatmap l m
                          Gflatmap (x::l) (y++m).

  Hint Constructors Gflatmap : core.

  Fact Gflatmap_inv_left l m :
        Gflatmap l m
       match l with
        | [] => [] = m
        | x::l => y m', F x y Gflatmap l m' m = y++m'
        end.
  Proof. destruct 1; eauto. Qed.

  Fact Gflatmap_inv_sg_left x m : Gflatmap [x] m F x m.
  Proof.
    intros (y & ? & ? & <-%Gflatmap_inv_left & ->)%Gflatmap_inv_left.
    now rewrite app_nil_r.
  Qed.

  Fact Gflatmap_app_inv_left l1 l2 m :
        Gflatmap (l1++l2) m
       m1 m2, Gflatmap l1 m1 Gflatmap l2 m2 m = m1++m2.
  Proof.
    induction l1 as [ | x l1 IH1 ] in m |- *; simpl.
    + exists [], m; auto.
    + intros (y & m' & H1 & (m1 & m2 & H2 & H3 & ->)%IH1 & ->)%Gflatmap_inv_left.
      exists (y++m1), m2; rewrite app_assoc; auto.
  Qed.

  Fixpoint flatmap l : (x, x l D x) sig (Gflatmap l).
  Proof.
    refine (match l with
    | [] => λ _ , exist _ [] Gfm_nil
    | x::l => λ dl, let (y,hy) := f x _ in
                    let (m,hm) := flatmap l _ in
                    exist _ (y++m) (Gfm_cons hy hm)
    end); auto.
  Defined.

  Variables (g : X list X) (Hg : x, F x (g x)).

  Fact Gflatmap_flat_map l : Gflatmap l (flat_map g l).
  Proof. induction l; simpl; now constructor. Qed.

End flatmap.

Arguments Gflatmap {X} _.
Arguments flatmap {X} _ {D} _ {l}.

Section irred.

  Variables (X : Type) (f : X list X).

  Implicit Type l : list X.

  Unset Elimination Schemes.

Because of nesting, induction principles are too weak, see below for better ones

  Inductive Girred : X list X Prop :=
    | Girred_nil {x} : f x = []
                        Girred x [x]
    | Girred_not {x l} : f x []
                        Gflatmap Girred (f x) l
                        Girred x l.

  Set Elimination Schemes.

  Fact Girred_inv_nil {x l} : Girred x l f x = [] [x] = l.
  Proof. destruct 1 as [ | ? ? Hx ]; intros; trivial; now destruct Hx. Qed.

  Fact Girred_inv_not {x l} : Girred x l f x [] Gflatmap Girred (f x) l.
  Proof. destruct 1; intros G; trivial; now destruct G. Defined.

  Hint Constructors Gflatmap Girred : core.
  Hint Resolve Girred_inv_nil Girred_inv_not : core.

  Section Girred_ind.

    Variables (P : list X list X Prop)
              (Q : X list X Prop)

              (HP0 : P [] [])
              (HP1 : x y l m, Girred x y Q x y Gflatmap Girred l m P l m P (x::l) (y++m))

              (HQ0 : x, f x = [] Q x [x])
              (HQ1 : x m, f x [] Gflatmap Girred (f x) m P (f x) m Q x m).

    Fixpoint Girred_ind x m (dxm : Girred x m) { struct dxm } : Q x m.
    Proof.
      destruct (list_is_nil (f x)) as [ H | H ].
      + destruct (Girred_inv_nil dxm H); auto.
      + apply HQ1; auto.
        generalize (Girred_inv_not dxm H).
        clear dxm H.
        induction 1; eauto.
    Qed.

  End Girred_ind.

  Lemma Girred_fun : x l, Girred x l (λ x l, m, Girred x m l = m) x l.
  Proof.
    (* the property which is proved for (Gflatmap Girred) cannot be guessed by unification *)
    apply Girred_ind with (P := fun l m1 => m2, Gflatmap Girred l m2 m1 = m2); eauto.
    + now intros ? ?%Gflatmap_inv_left.
    + intros ? ? ? ? ? ? ? ? ? (y' & m' & ? & ? & ->)%Gflatmap_inv_left; f_equal; eauto.
  Qed.

We build irred packed with conformity to Girred by Fix_F induction over Acc (λ u v, u ∈ f v) x directly
  Let irred_pwc : x (dx : Acc (λ u v, u f v) x), sig (Girred x).
  Proof.
    refine (Fix_F _ (λ x irred_pwc,
      match list_is_nil (f x) with
      | left Hxf => exist _ [x] _
      | right Hxf => let (m,hm) := flatmap Girred irred_pwc (λ _ h, h) in
                     exist _ m _
      end)); auto.
  Defined.

Now we can instanciate for _ ∈ f _ is well founded and define irred as a total function

  Hypothesis hf : well_founded (λ u v, u f v).

  Definition irred x := proj1_sig (irred_pwc x (hf x)).

  Fact irred_spec x : Girred x (irred x).
  Proof. apply (proj2_sig _). Qed.

  Hint Resolve irred_spec : core.

We conclude with fixpoint equations

  Fact irred_nil x : f x = [] irred x = [x].
  Proof. intros; eapply Girred_fun; eauto. Qed.

  Hint Resolve Gflatmap_flat_map : core.

  Fact irred_not x : f x [] irred x = flat_map irred (f x).
  Proof. intros; eapply Girred_fun; eauto. Qed.

End irred.

Arguments Girred {X}.
Arguments irred {X f}.